首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our previous work has shown that phenyl phosphate acts as an exogenous substrate for GDP-mannose:dolichyl phosphate mannosyltransferase in rat liver microsomal fractions to give rise to phenyl phosphate beta-D-mannose, a compound which, unlike Dol-P-Man (dolichyl phosphate beta-D-mannose), cannot act as mannose donor for further mannose-adding reactions in microsomal fractions. The study has now been extended to the action of various aryl phosphates and structurally related compounds on several other glycosyltransferase systems in the microsomal fractions. (1) Examination of the ability of these compounds to accept sugars from various sugar nucleotides indicated that the individual compounds have specificity as sugar acceptors. Thus phenyl phosphate acted as an effective acceptor for both mannose and glucose, whereas benzenephosphonic acid was active only in accepting mannose. p-Nitrophenyl phosphate was a more effective glucose acceptor than phenyl phosphate, but had only 8% of the mannose-accepting activity of phenyl phosphate. (2) Phenyl phosphate had an inhibitory effect on the transfer of mannose form GDP-mannose to lipid-linked oligosaccharides and to glycoproteins in rat liver microsomal fractions. The inhibition depended on the concentration of phenyl phosphate and on the extent of inhibition of Dol-P-Man synthesis. It is proposed that phenyl phosphate has a direct effect on the synthesis of Dol-P-Man and that its inhibition of synthesis of lipid-linked oligosaccharides and glycoproteins could be a consequence of this effect.  相似文献   

2.
A series of dialkyl phenyl phosphates (DAPPs) were synthesized and evaluated in silico and in vitro for inhibitory activity against acetylcholinesterase and butyrylcholinesterase. Among the compounds examined, several DAPPs were shown to be potent inhibitors of butyrylcholinesterase, while having little activity against acetylcholinesterase. The most potent and selective inhibitors were di-n-butyl phenyl phosphate (K(i)=43 microM), di-n-pentyl phenyl phosphate (K(i)=6 microM), and di-cyclohexyl phenyl phosphate (K(i)=7 microM), the first which was shown to be a competitive inhibitor while the latter two being partial competitive inhibitors. Flexible docking simulations suggested that relative binding affinities generally increased as a function of alkyl chain length, while the strength and nature of inhibitory activity depended on whether the compound bound deeply or midway in the active site gorge, or in the proposed peripheral site.  相似文献   

3.
Acylphosphatase, one of the smallest enzymes, is expressed in all organisms. It displays hydrolytic activity on acyl phosphates, nucleoside di- and triphosphates, aryl phosphate monoesters, and polynucleotides, with acyl phosphates being the most specific substrates in vitro. The mechanism of catalysis for human acylphosphatase (the organ-common type isoenzyme) was investigated using both aryl phosphate monoesters and acyl phosphates as substrates. The enzyme is able to catalyze phosphotransfer from p-nitrophenyl phosphate to glycerol (but not from benzoyl phosphate to glycerol), as well as the inorganic phosphate-H(2)18O oxygen exchange reaction in the absence of carboxylic acids or phenols. In short, our findings point to two different catalytic pathways for aryl phosphate monoesters and acyl phosphates. In particular, in the aryl phosphate monoester hydrolysis pathway, an enzyme-phosphate covalent intermediate is formed, whereas the hydrolysis of acyl phosphates seems a more simple process in which the Michaelis complex is attacked directly by a water molecule generating the reaction products. The formation of an enzyme-phosphate covalent complex is consistent with the experiments of isotope exchange and transphosphorylation from substrates to glycerol, as well as with the measurements of the Br?nsted free energy relationships using a panel of aryl phosphates with different structures. His-25 involvement in the formation of the enzyme-phosphate covalent complex during the hydrolysis of aryl phosphate monoesters finds significant confirmation in experiments performed with the H25Q mutated enzyme.  相似文献   

4.
Phosphate esters exist ubiquitously in nature in the form of nucleoside phosphates (nucleotides) as components of RNA (or DNA), sugar nucleotides for glycosylation of oligosaccharides or proteins, activated form of proteins responding to extracellular signals, and chemical mediators playing central roles in intracellular signaling signals. Phosphorylation of anti-viral nucleoside analogues by intracellular kinases yields nucleoside phosphates (nucleotide) as biologically active forms as anti-viral agents. Development of artificial phosphate receptors would afford new methodologies for detection, separation, or transport of biologically important phosphates. Herein, a recent progress of artificial phosphate receptors is reviewed with special focus on macrocyclic polyamines and their metal complexes as a new prototype. In comparison to most of the previous artificial receptors (most of them are organic molecules), our system characteristically works in aqueous solution at neutral pH with extremely strong affinities with phosphate anions. Moreover, zinc(II)-macrocyclic tetraamine (cyclen) complexes were discovered to selectively bind thymine and uracil, so that nucleotides of these bases are specifically recognized by the bis(Zn2+-cyclen) complexes.  相似文献   

5.
Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman’s spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors.  相似文献   

6.
Methyl (alpha-D-galactopyranosyluronic acid)-(1-->4)-D-galactopyranuronate and methyl alpha-D-galactopyranosyl-uronate-(1-->4)-D-galactopyranuronic acid have been synthesized by coupling methyl (benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate (3) or benzyl (benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate (4) with benzyl (phenyl 2,3,4-tri-O-benzyl-1-thio-beta-D-galactopyranosid)uronate and methyl (phenyl 2,3,4-tri-O-benzyl-1-thio-beta-D-galactopyranosid)uronate, respectively, using N-iodosuccinimide and trifluoromethanesulphonic acid as promoters, followed by removal of the benzyl groups. The 4'-OH unprotected dimers benzyl (methyl 2,3-di-O-benzyl-alpha-D-galactopyranosyluronate)-(1-->4)-(benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate and methyl (benzyl 2,3-di-O-benzyl-alpha-D-galactopyranosyluronate)-(1-->4)-(benzyl 2,3-di-O-benzyl-beta-D-galactopyranosid)uronate were prepared from methyl (phenyl 2,3-di-O-benzyl-1-thio-4-O-trimethylsilyl-beta-D-galactopyranosid) uronate and benzyl (phenyl 2,3-di-O-benzyl-1-thio-4-O-trimethylsilyl-beta-D-galactopyranosid) uronate and acceptors 4 or 3, respectively. These compounds have been designed to serve as precursors for the preparation of higher-membered D-galacturonic acid oligomers methyl esterified in definite positions.  相似文献   

7.
Pyridoxal 5-phosphate, phenyl phosphate and acetyl phosphate,as well as rß-naphthyl monophosphate, inhibited photophosphorylationof spinach chloroplasts competitively with Pi and noncompetitivelywith ADP. The apparent dissociation constant of the inhibitor-enzymecomplex (Ki) values of pyridoxal 5-phosphate, phenyl phosphateand acetyl phosphate for the Pi site were 1.1, 3.8 and 2.4 mM,respectively. These organic phosphates inhibited Ca2+-ATPaseof the isolated coupling factor 1 (CF1) (EC 3.6.1.3 [EC] ) noncompetitivelywith ATP. AMP, creatine phosphate, fructose 1,6-bisphosphate,glucose 6-phosphate, 3-phosphoglyceric acid, ribose 5-phosphateand PPi did not significantly inhibit photophosphorylation.Like rß-naphthyl monophosphate, pyridoxal 5-phosphateand phenyl phosphate inhibited photophosphorylation and thecoupled electron transport, but were almost without effect onthe basal electron transport. On the other hand, acetyl phosphateconsiderably inhibited photophosphorylation, but had almostno effect on the coupled electron transport rate and the basalrate. The results suggest that these organic phosphates inhibitphotophosphorylation by binding at the Pi site on the activecenter of CF1 and that their binding inhibits the ATPase activityof isolated CF1. These four organic phosphates which inhibited photophosphorylationcompetitively with Pi could not substitute for ADP or ATP ininhibiting ferricyanide photoreduction by decreasing H+-permeabilitythrough CF1 and in protecting the ATPase of isolated CF1 againstcold-anion inactivation. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H.S. (Received May 25, 1981; Accepted September 28, 1981)  相似文献   

8.
Several bovine spleen enzymes with acid pH optima, some of which hydrolyze bis(p-nitrophenyl)phosphate and therefore fit the definition of "phosphodiesterase IV," were partially separated by isoelectric focusing and ion-exchange techniques. The activities were characterized by zymogram analysis with the aid of p-nitrophenyl and 4-methylumbelliferyl phosphate and phosphonate substrates. A number of these enzymes meet the criteria for phosphodiesterase I or other phosphodiesterases. However, the predominant phosphodiesterase I hydrolyzes the bis(p-nitrophenyl)-and 4-methylumbelliferyl phosphates, p-nitrophenyl and 4-methylumbelliferyl phenylphosphonate, and ATP at the beta-gamma bond, but not p-nitrophenyl or 4-methylumbelliferyl 5'-thymidylate (the usual PDE I substrates). These properties, as well as the pH optimum, distinguish the activity from the previously described, alkaline pH optimum PDE I. A second phosphodiesterase hydrolyzes only the phenylphosphonates. Several other activities, less well described, are apparent on zymograms. None of the phosphodiesterases IV was also a phosphodiesterase II (no hydrolysis of 4-methylumbelliferyl 3'-thymidylate).  相似文献   

9.
CycloSal-d4TMP and two different bis(benzyl) phosphate triesters of the antivirally active nucleoside analog d4T were studied with regard to their chemical hydrolysis behavior at pH 7.3, in CEM/0 cell extracts, and their anti-HIV activity. In contrast to triesters 2-4, bis-(o-AB)-d4TMP 1 was found to be chemically exquisitely stable. All compounds led to the formation of d4TMP in cell extracts and all triesters achieved the TK-bypass.  相似文献   

10.
Dolichols of defined uniform chain length (C35, C45, and C55) and geometry were prepared by total synthesis according to the following principle: (E,E)-Farnesol, activated as its 4-tolyl sulfone, is condensed with 8-chloroneryl benzyl ether, the sulfonyl group removed and the ether linkage cleaved by lithium/triethylamine. The resulting elongated prenol is converted again to its corresponding 4-toly/sulfone; at this stage isomers are removed by chromatography. After several cycles of this C10-elongation sequence the synthesis is completed in the same way but using 8-chlorocitronellyl benzyl ether as building block to introduce the saturated alpha-isoprene unit. The dolichols obtained were chemically phosphorylated (POCl3/Et3N). Both, the alcohols and their phosphate esters, are characterized spectroscopically. 1H- and 13C-NMR data are recorded for qualitative and stereochemical comparison with natural dolichols. The authentic dolichyl phosphates (Dol-7-P, Dol-9-P, and Dol-11-P) were assayed relative to the natural dolichyl phosphate mixture from pig liver as acceptors for transglycosylation from nucleoside diphosphate sugars (glucose, mannose) by standardized membrane vesicle preparations from plants (Volvox) and animals (liver). Even the shortest chain dolichyl 7-phosphate has full activity in this lipoglycan-forming reaction.  相似文献   

11.
A number of carboxylic acids and organic phosphates were found to be highly effective in stabilizing the colchicine-binding activity of calf brain tubulin. The most active were glutamate, glutarate, delta-aminovalerate, glucose 1-phosphate, glucose 6-phosphate, fructose 1,6-(bis)phosphate, creatine phosphate and 6-phosphogluconate Maximum effects occurred at high concentrations. Combinations of agents were also examined, and the most effective mixture for stabilizing tubulin found thus far was the combination of 1.0 M glutamate, 100 mM glucose 1-phosphate, 1 mM GTP and 0.5 mg/ml of albumin. No loss of activity occurred over 48 h at 37 degrees C with tubulin was present at a concentration of 100 microgram/ml.  相似文献   

12.
Tetrabutylammonium fluoride will remove phenyl, trichloroethyl and cyanoethyl groups from nucleotides. In addition to the desired nucleotide products other results including chain cleavage, phosphofluoridates and cyanoethylated thymidine units may be obtained depending on the conditions used. Fluoride ion has been used to successfully exchange phenyl and trichloroethyl groups for methyl, ethyl and butyl groups in nucleotide triesters. This represents a rapid high yield route to a variety of phosphate esters. The synthesis of a novel nucleotide analogue in which two chains are bridged through their phosphates is described.  相似文献   

13.
Bis(benzyl)polyamine analogues (e.g. NN'-bis(3-[(phenylmethyl)amino]propyl)-1,8-diamino-octane [C6H5CH2NH-(CH2)3NH(CH2)8NH(CH2)3NHCH2C6H5]) have previously been shown to regulate polyamine biosynthesis and growth of rat hepatoma (HTC) cells. Saturable uptake of the analogues, the ability of other bis(benzyl)polyamine analogues to compete for this uptake and the trans-acceleration of this uptake in pre-loaded cells indicate that these novel compounds are accumulated through the action of a transport system in HTC cells. A mutant Chinese-hamster-ovary (CHO) cell line, CHOMG, which lacks a functional polyamine-transport system, exhibited saturable bis(benzyl)polyamine uptake identical with that observed in the parental CHO cells, which have normal polyamine transport. The uptake of the analogue by both CHOMG and CHO cells was competitively inhibited by other bis(benzyl)polyamine analogues, but was insensitive to excess spermine. Treatment with alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis, resulted in the enhancement of spermine uptake in CHO cells but did not alter the uptake of a bis(benzyl)polyamine analogue by either CHO or CHOMG cells. Thus it appears that bis(benzyl)polyamine analogues are substrates for a mammalian-cell-transport system distinct from the polyamine-transport system.  相似文献   

14.
Majumdar S  Adediran SA  Nukaga M  Pratt RF 《Biochemistry》2005,44(49):16121-16129
The production of beta-lactamases is an important component of bacterial resistance to beta-lactam antibiotics. These enzymes catalyze the hydrolytic destruction of beta-lactams. The class D serine beta-lactamases have, in recent years, been expanding in sequence space and substrate spectrum under the challenge of currently dispensed beta-lactams. Further, the beta-lactamase inhibitors now employed in medicine are not generally effective against class D enzymes. In this paper, we show that diaroyl phosphates are very effective inhibitory substrates of these enzymes. Reaction of the OXA-1 beta-lactamase, a typical class D enzyme, with diaroyl phosphates involves acylation of the active site with departure of an aroyl phosphate leaving group. The interaction of the latter with polar active-site residues is most likely responsible for the general reactivity of these molecules with the enzyme. The rate of acylation of the OXA-1 beta-lactamase by diaroyl phosphates is not greatly affected by the electronic effects of substituents, probably because of compensation phenomena, but is greatly enhanced by hydrophobic substituents; the second-order rate constant for acylation of the OXA-1 beta-lactamase by bis(4-phenylbenzoyl) phosphate, for example, is 1.1 x 10(7) s(-)(1) M(-)(1). This acylation reactivity correlates with the hydrophobic nature of the beta-lactam side-chain binding site of class D beta-lactamases. Deacylation of the enzyme is slow, e.g., 1.24 x 10(-)(3) s(-)(1) for the above-mentioned phosphate and directly influenced by the electronic effects of substituents. The effective steady-state inhibition constants, K(i), are nanomolar, e.g., 0.11 nM for the above-mentioned phosphate. The diaroyl phosphates, which have now been shown to be inhibitory substrates of all serine beta-lactamases, represent an intriguing new platform for the design of beta-lactamase inhibitors.  相似文献   

15.
The following studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases cellular levels of cyclic AMP, also provokes increases in 'second messengers' derived from inositol lipid metabolism (i.e. inositol phosphates and diacylglycerol). Rat granulosa cells isolated from mature Graafian follicles were prelabelled for 3 h with myo-[2-3H]inositol. LH provoked rapid (5 min) and sustained (up to 60 min) increases in the levels of inositol mono-, bis, and trisphosphates (IP, IP2 and IP3, respectively). Time course studies revealed that IP3 was formed more rapidly than IP2 and IP following LH treatment. The response to LH was concentration-dependent with maximal increases at LH concentrations of 1 microgram/ml. LiCl (2-40 mM) enhanced the LH-provoked accumulation of all [3H]inositol phosphates, presumably by inhibiting the action of inositol phosphate phosphatases. The effectiveness of LH, however, was dependent on the concentration of lithium employed; maximal increases in IP were observed at 10 mM-LiCl, whereas maximal increases in IP2 and IP3 were observed at 20 mM- and 40 mM-LiCl, respectively. The stimulatory effects of LH on inositol phosphate and progesterone accumulation were also compared with changes in cyclic nucleotide levels. LH rapidly increased levels of inositol phosphates, progesterone and cyclic AMP, but transiently reduced levels of cyclic GMP. These results demonstrate that LH increases both cyclic AMP and inositol trisphosphate (and presumably diacylglycerol) in rat granulosa cells. Our findings suggest that two messenger systems exist to mediate the action of LH in granulosa cells.  相似文献   

16.
Three different synthetic routes have been explored for the synthesis of the mono-N-substituted phosphinoamine N-ethyl,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine: (a) selective alkylation of N,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine; (b) linkage of the different fragments of N-ethyl,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine; (c) selective acylation of N,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine followed by acetyl reduction. While approaches (a) and (b) were unsuccessful, N-ethyl,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine was obtained by route (c) via separation of the mono- and di-alkylated P2N2-species obtained from reduction, through complexation of Ni(NO3)26H2O followed by demetallation reaction with KCN. Additional related phosphinoamine chelates and phosphonium adducts were synthesized and characterized by conventional physico–chemical techniques.  相似文献   

17.
Phosphoinositide breakdown has been linked to the receptor mechanism involved in the elevation of cytosolic Ca2+. In a cell-free system prepared from [3H] inositol-labeled blowfly salivary glands, 5-hydroxytryptamine stimulated the rapid production of inositol phosphates. Within 30 s of hormone addition, there was a 100% increase in inositol trisphosphate formation, a 70% increase in inositol bisphosphate formation, and a 90% increase in inositol monophosphate formation as compared to control homogenates incubated for the same length of time. 5-Hydroxytryptamine did not stimulate inositol or glycerol phosphoinositol formation. Half-maximal activation of inositol phosphate production was obtained with 0.33 microM 5-hydroxytryptamine. Ethylene glycol bis(beta-aminoethyl ether)-N',N',N',N'-tetraacetic acid, (EGTA) (0.3 mM) inhibited the basal formation of inositol phosphates and decreased the net accumulation of inositol bisphosphate and inositol trisphosphate due to hormone as compared to homogenates incubated in the absence of added Ca2+. EGTA, however, had little effect on the per cent stimulation of inositol phosphate production due to hormone. In homogenates, ATP, GTP or guanyl-5'-yl imidodiphosphate (Gpp(NH)p) was required for a hormone effect. Gpp(NH)p, unlike ATP or GTP, increased the basal formation of inositol phosphates. In membranes, GTP, Gpp(NH)p, or guanosine 5'-(3-O-thio)trisphosphate (GTP gamma S) sustained a hormone effect whereas ATP was ineffective. GTP did not affect production while Gpp(NH)p and GTP gamma S increased inositol phosphate production. Half-maximal effects of Gpp(NH)p and GTP gamma S on hormone-stimulated inositol phosphate formation occurred at 10 microM and 100 nM, respectively. In the presence of 1 microM GTP gamma S, 5-methyltryptamine stimulated inositol phosphate formation within 2 s in membranes. These results indicate that in a cell-free system, GTP is involved in mediating the effects of Ca2+-mobilizing hormones on phosphoinositide breakdown.  相似文献   

18.
Numerous phosphates of microtubule-associated protein 2 in living rat brain   总被引:12,自引:0,他引:12  
Microtubule-associated protein 2 (MAP 2) purified from microwave-irradiated rat head contained about 46 esterified phosphates (mole/mol), which were not bound covalently to lipids and did not assemble with microtubules. After some phosphates were released by calf intestinal alkaline phosphatase, the phosphate content of MAP-2 decreased to 16 mol of phosphate and the protein assembled in vitro. MAP-2 purified after microtubule assembly cycles and also the cytosolic heat-stable fraction without assembly cycles had 10 mol of phosphate, and both assembled with microtubules. The MAP-2 with 46 phosphates and that with 10 had different pI in isoelectric focusing, but the components, MAP-2a and -2b, were always near each other. In high-pressure liquid chromatography, MAP-2 containing 46 mol of phosphate appeared after that 10 mol of phosphate. Phosphoserine, phosphothreonine, and phosphotyrosine were recovered from tryptic digestion of MAP-2 with 46 mol of phosphate. These findings suggest that two kinds of MAP-2, one with 46 phosphates and not bound to tubulin and the other with 10-16 phosphates and bound to tubulin, are present in the living rat brain.  相似文献   

19.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

20.
Methyl 4,6-O-benzylidene-2,3-di-O-propargyl-alpha-D-glucoside (2) has been prepared and its structure determined, including its X-ray structural analysis. For comparison the structure of the corresponding allyl derivative has also been determined by X-ray crystallography. Glucoside 2 is a versatile starting material for numerous novel derivatives such as diols, a diester, a diacid, and a dialdehyde. Subjecting 2 to a Mannich reaction leads to a (bis)amine in excellent yields. The click reaction between 2 and benzyl azide furnishes a (bis)triazole as the main product. Deprotection of 2 furnishes a (bis)propargyl ether, which can be converted by the methodology developed for 2 to the corresponding (bis)acetylenes; click reaction with benzyl azide converts 2 into a (bis)triazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号