首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
金城 《生物工程学报》2012,28(4):391-392
酶工程是酶学与工程科学融合的综合性科学技术,是现代生物技术与未来生物经济的支柱。近年来,随着在合成生物学研究上的突破,作为合成生物学重要核心内容的酶工程研究受到重视与关注,为促进国内酶工程研究的发展,本期"酶工程专刊"介绍了我国酶工程专家与青年学者在新酶的发掘、酶的作用机制及酶的生产与应用方面所取得的最新进展。  相似文献   

2.
金城 《生物工程学报》2018,34(7):1021-1023
酶工程是酶学与工程科学融合的综合性科学技术,是现代生物技术的支柱之一。为促进国内酶工程研究的发展,本期"酶工程专刊"集中展现了我国酶工程专家学者在酶工程领域所取得的最新进展。  相似文献   

3.
中国酶工程的兴旺与崛起   总被引:1,自引:0,他引:1  
酶工程是生物工程的重要组成部分,工业生物催化技术被认为是继医药、农业之后的第三个浪潮。在25年中,中国在酶工程领域研究中取得很大进展,本综述集中介绍在中国酶工程会议上,酶的基因工程、酶的蛋白质工程、生物合成、微生物转化和生物传感器方面的成果和我国酶制剂工业的进展。  相似文献   

4.
酶的开发利用与酶工程   总被引:3,自引:0,他引:3  
近几十年来,由于酶的不断发展,酶的开发利用技术日趋成熟,形成了一门新的技术学科-酶工程.本文对酶工程所涉及的技术范围、研究内容、现状、发展趋向特别是酶的开发利用进行了较为全面的综述。  相似文献   

5.
金城 《微生物学通报》2020,47(7):2001-2002
酶工程是酶学与工程科学融合的综合性科学技术,新酶的发掘、对酶的结构与功能的认知及酶的改造是合成生物学、生物制造技术的重要科学与技术基础。在合成生物学的发展方兴未艾的今天,酶工程更是不可或缺的研究领域。  相似文献   

6.
我国酶与酶工程及其相关产业发展的回顾   总被引:2,自引:0,他引:2  
回顾我国近六十多年来的酶与酶工程及其相关产业发展走过的路程,吸取历史经验教训,走好今后的发展之路。  相似文献   

7.
反应介质对酶选择性的影响   总被引:6,自引:0,他引:6  
有机相酶催化是酶工程研究最活跃的领域之一。本文主要综述了反应介质对酶底物选择性、酶对映体选择性、酶前手性选择性、酶区域选择性及酶基因选择性的影响。  相似文献   

8.
工业酶制剂研发与应用已经渗透到各大工业领域,但中国作为用酶大国、产酶小国面临重大挑战,鉴于以化学催化为核心的基础物质加工业面临资源、能源和环境三大危机,酶工程与生物催化已被列入许多国家的科技与产业发展战略,应用高效、清洁的生物催化技术是实现化学工业可持续发展以及发酵工业产业升级的重要途径之一。文中以2017年第十一届中国酶工程学术研讨会杜邦-杰能科中国酶工程杰出贡献奖获得者特邀报告为基础整理编写而成,从自主酶库构建、酶分子机器/细胞工厂创制及产业化应用等角度概述当前酶工程与生物催化发展现状及前景。  相似文献   

9.
21世纪酶工程研究的新动向   总被引:14,自引:0,他引:14  
概述了21世纪国际上酶工程研究的新进展和新趋势,着重介绍国际酶工程研究领域的“若干热点”和前沿课题,包括基因工程和蛋白质工程的应用,人工合成酶的模拟酶,核酸酶和抗体酶,分子酶学,功能酶学,酶的定向固定化技术,杂交酶,分子发动机,酶化学技术,非水酶学,糖生物学和糖基转移酶,酶标药物,端粒酶,极端环境微生物和不可培养微生物的新酶种,酶在环境保护方面的应用等。  相似文献   

10.
有机溶剂中的酶催化——水和有机溶剂的影响   总被引:5,自引:0,他引:5  
有机相酶催化是酶工程研究最活跃的领域之一,本文主要综述水及有机溶剂对有机相酶催化过程中酶的活性,稳定性,底物特异性,酶反应速率等的影响。  相似文献   

11.
蔡真  李寅 《生物工程学报》2011,27(7):971-975
以生物催化和生物转化为核心的工业生物技术是实现社会和经济可持续发展的有效手段。本期专刊分别从基因工程、代谢工程与合成生物学、生理工程、发酵工程与生化工程、生物催化与生物转化、生物技术与方法等方面,介绍了我国在工业生物技术领域的最新研究进展。  相似文献   

12.
Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, ?thus not reusable- and their performance under real operational conditions is uncertain.Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts.In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel “immobilized biocatalyst engineering” research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications.  相似文献   

13.
Enzyme kinetic measurements are important for the characterization and engineering of biocatalysts, with applications in a wide range of research fields. The measurement of initial reaction velocity is usually slow and laborious, which motivated us to explore the possibilities for automating this process. Our model enzyme is the maize β‐glucosidase Zm‐p60.1. Zm‐p60.1 plays a significant role in plant growth and development by regulating levels of the active plant hormone cytokinin. Zm‐p60.1 belongs to a wide group of hydrolytic enzymes. Members of this group hydrolyze several different types of glucosides, releasing glucose as a secondary product. Enzyme kinetic measurements using artificial substrates are well established, but burdensome and time‐consuming. Thus, they are a suitable target for process automation. Simple optical methods for enzyme kinetic measurements using natural substrates are often impossible given the optical properties of the enzymatic reaction products. However, we have developed an automated method based on glucose detection, as glucose is released from all substrates of glucosidase reactions. The presented method can obtain 24 data points from up to 15 substrate concentrations to precisely describe the enzyme kinetics. The combination of an automated liquid handling process with assays that have been optimized for measuring the initial hydrolysis velocity of β‐glucosidases yields two distinct methods that are faster, cheaper, and more accurate than the established protocols.  相似文献   

14.
近年来,高致病性禽流感病毒及表观遗传学是广受关注的生物医学领域。《 中国科学C辑:生命科学》 (Science in China Series C-Life Sciences)在2009年连续发表了两个专题,对两个研究领域的现状及发展态势,特别是当前一些具有挑战性的问题,进行了综合评述。表观遗传学专题包括三个论题:a. 迄今对组蛋白和非组蛋白甲基化的认识和了解,重点论述了组蛋白的甲基标记及去甲基化酶对组蛋白甲基化的动力学调控;b. miRNA的生物发生及其在转录后基因沉默的功能作用;c. 植物中RNA指导的DNA甲基化和去甲基化。禽流感病毒专题重点综合评述了高致病性人H5N1禽流感病毒研究领域的现状及其挑战,包括流行病学,疾病控制及病毒作用机理。有5篇评述全面总结了高致病性禽流感A(H5N1)感染,特别是人患禽流感,在中国大陆和香港特别行政区的发现及处置全过程,包括疫情沿起和传播,临床诊断,病毒特性,以及政府和公共卫生机构的政策和措施,为有效预防今后可能再度发生类似的疫情提供了可贵的实际经验。该专题还包括了4篇述评和研究论文,对病毒种间传播的宿主原因及感染人的分子病理学,流感病毒核蛋白(NP)的三维结构及其与RNA的相互作用,以及流感病毒RNA聚合酶PA亚基的三维结构与功能,进行了深度解析,并讨论了基于结构的抗流感药物研发前景.  相似文献   

15.
《酶工程》教学与课程建设的探讨   总被引:5,自引:2,他引:5  
酶工程是生物技术专业的主干课程,其主要内容是研究酶的生产和应用。为了使酶工程的教学适合时代发展的需要,培养合格的从事酶工程研究及生产的技术人才,以多年酶工程教学实践为基础,集中介绍该门课程教学与建设的体会及其思考。  相似文献   

16.
Enzyme engineering is a powerful tool to fine-tune the enzymes. It is a technique by which the stability, activity, and specificity of the enzymes can be altered. The characteristic properties of an enzyme can be amended by immobilization and protein engineering. Among them, protein engineering is the most promising, as in addition to amending the stability and activity, it is the only way to modulate the specificity and stereoselectivity of enzymes. The current review sheds light on protein engineering and the approaches applied for it on the basis of the degree of knowledge of structure and function of enzymes. Enzymes, which have been engineered are also discussed in detail and categorized on the basis of their respective applications. This will give a better insight into the revolutionary changes brought by protein engineering of enzymes in various industrial and environmental processes.  相似文献   

17.
多孔纳米材料固定化酶研究进展   总被引:4,自引:0,他引:4  
酶是一种天然生物催化剂,有催化效率高、底物选择性强和绿色环保等优点,但酶结构不稳定且重复利用率低,制约了其产业化应用。随着技术的发展,酶的固定化可以提高酶的活性和稳定性,为生物酶的工程化应用带来了新的机遇。多孔纳米材料具有比表面积大、孔隙率高、机械和化学性能稳定等特点和优异的成本效益,是理想的固定化酶载体。本文综述了近些年来金属有机框架、共价有机框架和多孔微球等纳米材料固定化酶的研究进展和应用,重点介绍了载体固定酶的方式,并总结了每种载体的特点,最后讨论了多孔纳米材料固定化酶面临的挑战和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号