首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

2.
Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation study located in the northern Great Basin, USA. Springtime litter was partially or completely removed in three communities with differing levels of invasion (invaded, mixed, and native) to determine how litter removal and litter biomass affected plant-available soil N and plant community composition. Litter biomass (prior to the removal treatment) was negatively correlated with plant-available N in the invaded community, but was positively correlated in the native community. Plant-available N had greater intra- and inter-annual fluctuations in the invaded compared to the mixed or native communities, but was not generally affected by removal treatments. Litter removal had negative effects on AG cover during a warm/dry year and negative effects on PG cover during a cool/wet year in the mixed community. Overall, the effectiveness of springtime litter manipulations on plant-available N were limited and weather dependent, and only removal treatments >75 % had effects on the plant community. Our study demonstrates how communities invaded by AGs have significantly increased temporal variability in nutrient cycling, which may decrease ecosystem stability. Further, we found that the ecological impacts from litter manipulation on sagebrush communities were dependent on the extent of AG invasion, the timing of removal, and seasonal precipitation.  相似文献   

3.
Increasing fire risk and atmospheric nitrogen (N) deposition have the potential to alter plant community structure and composition, with consequent impacts on biodiversity and ecosystem functioning. This study was conducted to examine short‐term responses of understory plant community to burning and N addition in a coniferous‐broadleaved mixed forest of the subtropical‐temperate transition zone in Central China. The experiment used a pair‐nested design, with four treatments (control, burning, N addition, and burning plus N addition) and five replicates. Species richness, cover, and density of woody and herbaceous plants were monitored for 3 years after a low‐severity fire in the spring of 2014. Burning, but not N addition, significantly stimulated the cover (+15.2%, absolute change) and density (+62.8%) of woody species as well as herb richness (+1.2 species/m2, absolute change), cover (+25.5%, absolute change), and density (+602.4%) across the seven sampling dates from June 2014 to October 2016. Light availability, soil temperature, and prefire community composition could be primarily responsible for the understory community recovery after the low‐severity fire. The observations suggest that light availability and soil temperature are more important than nutrients in structuring understory plant community in the mixed forest of the subtropical‐temperate transition zone in Central China. Legacy woody and herb species dominated the understory vegetation over the 3 years after fire, indicating strong resistance and resilience of forest understory plant community and biodiversity to abrupt environmental perturbation.  相似文献   

4.
Invasive species removal is an important first step toward restoring invaded ecosystems; however, restoration following removal may be hindered by (1) unintended consequences of management, such as habitat destabilization, and/or (2) legacy effects of the invader, such as persistent alterations of soil structure or plant community composition. During 1956–1972, approximately 26,000 individuals of the non‐native pine, Pinus nigra, were planted into multiple freshwater sand dune habitats as a stabilization measure on the eastern shore of Lake Michigan in Allegan County, MI, U.S.A. From 2004 to 2010, we evaluated the recovery of foredune and blowout habitats following P. nigra removal in 2003–2005. We compared sand movement and plant community structure, composition, and richness between removal and control sites over the 6 years following pine removal. In addition, we evaluated the impact of litter removal on recolonization of native graminoids in foredunes. Sand movement patterns never differed between removal and control sites in foredunes; however, accumulation was more common in removal sites in blowouts 1 and 6 years following pine removal. Vegetation cover in removal sites became indistinguishable from control sites in both foredunes and blowouts, but species richness for both forb and woody species was higher in removal sites in blowouts. Removal sites in both foredunes and blowouts had higher cover by forbs and lower cover by graminoids. Pine litter did not inhibit recolonization of foredunes by native graminoids. These results suggest that high disturbance habitats, such as sand dunes, have the potential to recover from invasion if the mechanism of disturbance is restored and pioneer species are present to recolonize the system.  相似文献   

5.
《农业工程》2021,41(4):341-345
Plant litter is dead, above and below ground; organic material i.e. leaves barks, needles, twigs and roots. Plant litter plays a key role in nutrient cycling and community organization in grassland ecosystems. Litter can have important consequences on recruitment of plant species through modification of biological, physical, and chemical features of microenvironment. Plant litter offers a major input of organic matter to the soil which modifies soil chemistry, hence impacts nutrient cycling. At early stages of litter decomposition, a particular amount of carbon is transporting to the soil nutrient pool. In terrestrial ecosystems, plant litter regulating biogeochemical cycles, maintain soil fertility, nutrient availability, and therefore influence plant growth, diversity, composition, structure, and productivity. Litter can also impact plant above net plant productivity and below net plant productivity in grassland ecosystem. Plant litter accumulation and decomposition can impact plant species composition and community structure through temperature, light and nutrient availability. The effects of plant litter on vegetation may be negative, positive or neutral due vegetation variability, study duration, habitat, latitude, quantity and quality of litter. These diverse effects of plant litter on grassland ecosystem might be due to, management practice type, management intensity, climate type, timing, precipitation and soil nutrient pool etc. Current review attempts to describe prominent effects of plant litter on vegetation, seed germination, soil fertility, Productivity, species composition, community structure and mechanism in grassland ecosystem.  相似文献   

6.
Plants in the Arctic and subarctic face the problems posed by herbivory in addition to short growth seasons, low temperatures and low nutrient availability. Herbivores control plant performance by removing biomass, by altering resource availability, by altering the physical environment, and by changing the balance of competition. The main difference between effects of herbivores in the Arctic and at lower latitudes may be the relatively greater importance of changes in resource availability and the physical environment resulting from herbivore activity, and their consequences for plant competitive abilities.Species responses to defoliation depend primarily on growth form. Artificial defoliation of graminoids has negative effects on most species, but in the field total effects of herbivores are often neutral or even positive, resulting in increased nitrogen concentrations in shoots in many species. Shrubs are less able to respond positively to herbivory than graminoids, and although there is some evidence that deciduous shrubs recover faster than evergreen ones, the difference is not great. However, effects of herbivores on shrubs are little studied, despite their importance in the herbivore diet.Responses of individual species to increased nutrient availability vary greatly, even within a growth form. Some graminoids and shrubs show strong positive responses to fertilization while others show little or no response. These species-specific effects suggest that herbivores can alter interspecific relationships through differential responses to fertilization. Herbivores may alter plant population dynamics by altering flower or seed production, by consuming seedlings, or by altering the availability of microsites. However, no study has adequately examined this for any arctic species.Changes in community composition following removal of herbivores are the result not only of selective removal of some plant species, but also of changes in microsite availability, nutrient availability, litter accumulation, and soil characteristics. Thus, the view that abiotic factors are the overwhelming determinants of community structure in low-productivity environments is compatible with the view that herbivores exercise their influence to a large extent by altering abiotic factors.Arctic herbivores often increase total above-ground nitrogen availability (and therefore food quality) in the plant community, but increased productivity as a result of herbivores is rare. The increase in nutrient availability is probably due in part to changes in soil temperature and soil moisture following a reduction in litter accumulation.Although our knowledge of effects of herbivory on individual plants and on communities is extensive, we lack information on effects at the population level. We also do not have an adequate understanding of impacts of herbivores at different spatial and temporal scales, something which is needed to be able to make predictions about longer-term impact of herbivores in these systems.  相似文献   

7.
在季节性积雪地区,冬季气候变暖导致积雪变薄、积雪不连续、融雪提前及雪盖面积缩小等现象。然而相较于氮沉降、增温、降水变化等全球变化因子,目前尚缺乏积雪因子对陆地生态系统过程和功能影响的系统报道。为加深人们对积雪特征变化生态后果的认知,综述了积雪深度和融雪时间变化对植被物候和群落组成、凋落物分解、土壤碳氮过程、温室气体排放和土壤微食物网(土壤动物和微生物)的影响。由于模拟积雪变化手段不同和复杂的气候、土壤背景,生态系统各要素对积雪特征变化的响应规律存在较大的分异和不确定性。例如,在未来气候变暖导致积雪变薄和融雪提前情景下,植被物候提前,生长季延长,导致生产力增加和凋落物数量增加,禾草比例减少导致凋落物质量增加,早春温度高刺激微生物活性,凋落物分解速率高,促进土壤碳氮周转过程。但积雪减少和融雪提前导致的早春低温和夏季干旱也可能引起植被生产力下降,凋落物数量减少质量降低,土壤微生物活性低,分解速率低,从而减缓碳氮周转过程。此外,积雪特征变化对植被特征和土壤碳氮过程影响相关研究目前还存在以下问题:1)积雪深度和融雪时间对生态系统的影响是否存在交互效应仍缺乏关注,且积雪变化对后续生长季是否存在持续...  相似文献   

8.
Plant stress resulting from soil freezing is expected to increase in northern temperate regions over the next century due to reductions in snow cover caused by climate change. Within plant communities, soil spatial heterogeneity can potentially buffer the effects of plant freezing stress by increasing the availability of soil microsites that function as microrefugia. Moreover, increased species richness resulting from soil heterogeneity can increase the likelihood of stress‐tolerant species being present in a community. We used a field experiment to examine interactions between soil heterogeneity and increased freezing intensity (achieved via snow removal) on plant abundance and diversity in a grassland. Patches of topsoil were mixed with either sand or woodchips to create heterogeneous and homogeneous treatments, and plant community responses to snow removal were assessed over three growing seasons. Soil heterogeneity interacted significantly with snow removal, but it either buffered or exacerbated the snow removal response depending on the specific substrate (sand vs. woodchips) and plant functional group. In turn, snow removal influenced plant responses to soil heterogeneity; for example, adventive forb cover responded to increased heterogeneity under ambient snow cover, but this effect diminished with snow removal. Our results reveal that soil heterogeneity can play an important role in determining plant responses to changes in soil freezing stress resulting from global climate change. While the deliberate creation of soil microsites in ecological restoration projects as a land management practice could increase the frequency of microrefugia that mitigate plant community responses to increased freezing stress, the design of these microsites must be optimized, given that soil heterogeneity also has the potential to exacerbate freezing stress responses.  相似文献   

9.
Despite their low relative abundance, subordinate plant species may have larger impacts on ecosystem functioning than expected, but their role in plant communities remains poorly understood. The aim of this study was to test how subordinate plant species influence the functioning of a species-rich semi-natural grasslands. A plant removal experiment was set-up in the mountain grasslands of the Jura Mountains (Switzerland) to test the impact of subordinate plant species on soil microbial communities and ecosystem functioning. The experiment included three treatments: removal of all subordinate species, partial biomass removal of dominant species, and a no biomass removal control. After 2 years of treatments, we determined soil microbial community (bacteria and mycorrhizal fungi) by T-RFLP analysis and measured litter decomposition, soil respiration, soil inorganic nitrogen (DIN) availability and throughout above-ground biomass production as measures of ecosystem function. The removal of subordinate plant species strongly affected bacterial and weakly influenced mycorrhizal fungi communities and decreased rates of plant litter decomposition, soil respiration and DIN availability with larger effects than the partial loss of dominant biomass. The removal of subordinate plant species did not modify plant community structure, but it did reduce total above-ground biomass production compared to the control plots. Collectively, our findings indicate that the loss of subordinate species can have significant consequences for soil microbial communities and ecosystem functions, suggesting that subordinate species are important drivers of ecosystem properties.  相似文献   

10.
Boreal peatlands may be particularly vulnerable to climate change, because temperature regimes that currently constrain biological activity in these regions are predicted to increase substantially within the next century. Changes in peatland plant community composition in response to climate change may alter nutrient availability, energy budgets, trace gas fluxes, and carbon storage. We investigated plant community response to warming and drying in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and a fen received three infrared warming treatments crossed with three water‐table treatments (n = 3) for five years. Foliar cover of each species was estimated annually. In the bog, increases in soil temperature and decreases in water‐table elevation increased cover of shrubs by 50% and decreased cover of graminoids by 50%. The response of shrubs to warming was distinctly species‐specific, and ranged from increases (for Andromeda glaucophylla) to decreases (for Kalmia polifolia). In the fens, changes in plant cover were driven primarily by changes in water‐table elevation, and responses were species‐ and lifeform‐specific: increases in water‐table elevation increased cover of graminoids – in particular Carex lasiocarpa and Carex livida– as well as mosses. In contrast, decreases in water‐table elevation increased cover of shrubs, in particular A. glaucophylla and Chamaedaphne calyculata. The differential and sometimes opposite response of species and lifeforms to the treatments suggest that the structure and function of both bog and fen plant communities will change – in different directions or at different magnitudes – in response to warming and/or changes in water‐table elevation that may accompany regional or global climate change.  相似文献   

11.
Hydrological disturbances can alter the structure and function of ecosystems by changing plant species composition over time. Peatlands in the northern hemisphere are particularly sensitive to global change drivers related to soil water availability, such as drought and drainage, because of important ecohydrological feedbacks between species composition and water table position. Here, we examined the plant community structure and environmental drivers of species distributions over two growing seasons along a bog – margin gradient, pre- and post-disturbance by beaver activity. Pond drainage resulted in seasonal average water table depth 8–24 cm lower in the second season. Five plant communities corresponded to changes in water table depth and acidity: bog, poor fen, meadow, mudflat and pond. Plant cover increased in meadow and mudflat communities, decreased in the pond community and did not differ between years in bog and poor fen communities. Changes in species abundance between years showed signs of alternate successional pathways: one that favors Sphagnum moss and bog community expansion and another pathway that favors meadow and mudflat expansion. This study highlights the non-linear successional trajectory of plant communities with changes in water table depth, which has implications for land management goals that aim to conserve the ecological integrity of peatland ecosystems.  相似文献   

12.
The widespread use of forest litter as animal bedding in central Europe for many centuries gave rise to the first litter manipulation studies, and their results demonstrated that litter and its decomposition are a vital part of ecosystem function. Litter plays two major roles in forest ecosystems: firstly, litterfall is an inherent part of nutrient and carbon cycling, and secondly, litter forms a protective layer on the soil surface that also regulates microclimatic conditions. By reviewing 152 years of litter manipulation experiments, I show that the effects of manipulating litter stem from changes in one, or both, of these two functions, and interactions between the variables influenced by the accumulation of litter can result in feedback mechanisms that may intensify treatment effects or mask responses, making the interpretation of results difficult.Long-term litter removal increased soil bulk density, overland flow, erosion, and temperature fluctuations and upset the soil water balance, causing lower soil water content during dry periods. Soil pH increased or decreased in response to manipulation treatments depending on forest type and initial soil pH, but it is unclear why there was no uniform response. Long-term litter harvesting severely depleted the forests of nutrients. Decreases in the concentrations of available P, Ca, Mg, and K in the soil occurred after only three to five years. The decline in soil N occurred over longer periods of time, and the relative loss was greater in soils with high initial nitrogen concentration. Tree growth declined with long-term litter removal, probably due to lower nutrient availability. Litter manipulation also added or removed large amounts of carbon thereby affecting microbial communities and altering soil respiration rates.Litter manipulation experiments have shown that litter cover acts as a physical barrier to the shoot emergence of small-seeded species; further, the microclimate maintained by the litter layer may be favourable to herbivores and pathogens and is important in determining later seedling survival and performance. Litter manipulation altered the competitive outcomes between tree seedlings and forbs, thereby influencing species composition and diversity; changes in the species composition of understorey vegetation following treatments occurred fairly rapidly. By decreasing substrate availability and altering the microclimate, litter removal changed fungal species composition and diversity and led to a decline in populations of soil fauna. However, litter addition did not provoke a corresponding increase in the abundance or diversity of fungi or soil fauna.Large-scale long-term studies are still needed in order to investigate the interactions between the many variables affected by litter, especially in tropical and boreal forests, which have received little attention. Litter manipulation treatments present an opportunity to assess the effects of increasing primary production in forest ecosystems; specific research aims include assessing the effects of changes in litter inputs on the carbon and nutrient cycles, decomposition processes, and the turnover of organic matter.  相似文献   

13.
Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation establishment following shrub removal is likely to be by upland species.  相似文献   

14.
The relationship between soil nitrogen (N) availability and plant community structure was investigated in old-fields in the shortgrass steppe of Colorado. Nitrogen availability was manipulated by N or sucrose additions for 4 years at three old-fields (early-seral, mid-seral, and late-seral) and at an uncultivated control site. The addition of N generally resulted in increased abundance of annual forbs and grasses relative to perennials at all of the previously cultivated sites. Conversely, experimental reduction of N availability generally increased the relative abundance of perennials. Despite a lack of detectable differences in N mineralization between sites and treatments, ion-exchange resin bags confirmed that sucrose additions reduced plant-available N and that N additions increased plant-available N. This was evidenced further by similar observations for plant tissue N content. The degree to which N additions increased N availability at the various sites supported the idea that late-seral plant communities are less effective at N capture relative to earlier-seral communities. The mid-seral old-field had the lowest rates of litter decomposition and a relatively large accumulation of litter on the soil surface. This mid-seral old-field was dominated by an exotic annual grass (Bromus tectorum), which appears to be a major hindrance to redevelopment of the plant-soil system. By experimentally reducing N availability at this stage, we were able, in 4 years, to change the plant community into one that more closely resembled the late-seral community. We also observed that the natural recruitment of weedy annual species on the uncultivated site during an unusually wet year was suppressed by reducing N availability. Our results suggest that available N is an important factor controlling the rate and course of plant and soil community redevelopment on abandoned croplands in the shortgrass steppe, and that manipulation of N availability might be useful in restoration of rangeland vegetation. Received 19 May 1998; accepted 27 August 1999.  相似文献   

15.
The effects of soil disturbance on the nematode community were assessed at 30 sites on the outer coastal plain of Mississippi, representing four ages since soil disturbance plus a control group of six undisturbed sites. Thirty-five taxa were encountered, dominated in abundance and taxonomic richness by plant and bacterial feeders. Nematodes were more abundant and more taxonomically rich in sites with a low slope and deep litter cover, distant from trees. Plant feeders were more numerous at sites with a dense herb cover, suggesting limitation by food availability. When sites were arranged as a chronosequence, herb cover, litter depth, soil organic matter, soil moisture, and tree canopy cover increased through time consistent with succession to forest. The abundance of most trophic groups decreased in the 10 to 20 years following disturbance and increased thereafter, a pattern repeated in taxonomic richness of plant and bacterial feeders. Fifty years after disturbance, nematode abundance had not returned to levels observed in control sites. These results suggest that nematode succession following soil disturbance is a gradual process regulated by establishment of aboveground vegetation. There was no evidence of dispersal limitation or facilitation by colonist nematode species.  相似文献   

16.
Dai  Weiwei  Peng  Bo  Liu  Jun  Wang  Chao  Wang  Xin  Jiang  Ping  Bai  Edith 《Biogeochemistry》2021,154(2):371-383

Aboveground litter not only is an important source of nutrients to soil microbes but also regulates the microclimate in topsoil. How the changes in aboveground litter quantity would affect the microbial biogeochemical cycles is still unclear. Here we conducted a litter input manipulation experiment in a temperate mixed forest to investigate how different amounts of litter input affect soil organic carbon (SOC) and soil respiration via their regulation on soil microbes. We found that although neither SOC stock nor soil CO2 efflux was affected by litter manipulation, soil microbial characteristics had responded after four years of litter addition or removal treatments. Microbial biomass carbon (MBC) in the O horizon was higher in litter addition plots than in litter removal plots as a result of the changed availability of labile C under litter treatments. Both double litter and no litter treatments changed microbial compositions, which was probably due to the increased soil pH in no litter treatment and the increased labile C in double litter treatment. The null change in soil respiration could be attributed to the offset between the negative effect of decreased substrate and the positive effect of increased temperature on soil respiration in litter removal plots. Due to the important role of soil microbes in carbon cycling, the altered microbial properties under litter manipulation treatments suggested the inevitable changes in biogeochemical cycling in the long run and call for long-term studies on SOC dynamics in the future.

  相似文献   

17.
《植物生态学报》1958,44(8):791
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

18.
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

19.
Global climate change is predicted to stimulate primary production and consequently increases litter inputs. Changing precipitation regimes together with enhanced litter inputs may affect plant community composition and structure, with consequent influence on diversity and ecosystem functioning. Responses of plant community to increased precipitation and belowground litter addition were examined lasting 5 years in a semiarid temperate grassland of northeastern China. Increased precipitation enhanced community species richness and abundance of annuals by 16.8% and 44%, but litter addition suppressed them by 25% and 54.5% after 5 years, respectively. During the study period, perennial rhizome grasses and forbs had consistent negative relationship under ambient plots, whereas positive relationship between the two functional groups was found under litter addition plots after 5 years. In addition, increased precipitation and litter addition showed significant interaction on community composition, because litter addition significantly increased biomass and abundance of rhizome grasses under increased precipitation plots but had no effect under ambient precipitation levels. Our findings emphasize the importance of water availability in modulating the responses of plants community to potentially enhanced litter inputs in the semiarid temperate grassland.  相似文献   

20.
The relationships between seedling emergence and litter cover were studied in the earliest successional stage of a plant community. During a period of 3 years, changes in vegetation cover and species composition were assessed on three permanent quadrats with virgin sandy soil substrates A successional pattern from summer annual grasses to winter annual herbacoeus plants to biennial and perennial plants was confirmed, and invasion and replacement of the component species were conspicuous. The spatial distributions of seedlings and litter were heterogeneous in winter, and some patches consisting of both seedlings and litter were observed. There was a strong positive correlation between distribution patterns of seedlings and litter; seedling density increased with increasing litter cover. The results suggest that the litter cover of the previous stage plays an imporrant role in promoting successional changes in the early stage of plant succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号