首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf‐litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf‐litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leaf‐shredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate‐mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate‐mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the biochemical traits (rather than taxonomic identity per se) of the resident and invading flora.  相似文献   

2.
1. Terrestrial leaf‐litter is the dominant energy input to many headwater streams and consequently the nature of the riparian vegetation can have profound effects on in‐stream processes. The impact of conifer plantations on community structure and ecosystem functioning (litter breakdown) was investigated in field experiments in three countries (Britain, Ireland, Poland), each representing a distinct European ecoregion. Twenty‐six streams were used in the trial: half were bordered with broadleaved and the other half with conifer riparian vegetation. 2. In a leaf breakdown study using litter bags, two leaf types (oak and alder) were used to assess the impact of resource quality and two mesh sizes (10 and 0.5 mm aperture) were used to gauge the relative importance of invertebrate detritivores and microbial decomposers respectively. Comparisons were made between vegetation types and among regions; pH varied among individual streams but, unlike many previous studies, it was not confounded with vegetation type, enabling us to isolate the effect of vegetation more effectively. 3. Overall, riparian vegetation type did not affect breakdown rates but strong regional differences were observed. There was also a significant interaction between these two variables, but this disappeared after fitting pH as a covariable, demonstrating its importance in determining breakdown rates and raising the possibility that in previous studies the impacts of conifer plantations might have been confounded with pH. 4. Shredder species composition differed between vegetation types. Small stoneflies were most strongly associated with conifer streams; broadleaved streams generally had a higher proportion of larger taxa, such as limnephilid caddisflies and gammarid shrimps, although the latter were excluded from sites with low pH. However, breakdown rates were maintained irrespective of shredder community composition, suggesting a high degree of functional redundancy in these communities. Similar processing rates were observed between streams with high numbers of nemourids and those with only a few limnephilids or gammarids, suggesting that density compensation among consumers might stabilise process rates. 5. Our results suggest that leaf‐litter breakdown can be an effective proxy for assessing stream ecosystem functioning, as rates differed significantly across spatial scales, from between streams to across regions and responded to an environmental gradient (pH). The litter bag technique can also complement traditional assessment methods by providing valuable information on the composition of consumer guilds, thereby providing an important link between structure and function that is needed to help inform management practices.  相似文献   

3.
Input, storage, export potential, and system-level processing of coarse organic matter were investigated in the intermittent streams that drain the Bear Brook Watershed in Maine (BBWM). BBWM is a paired catchment study investigating ecosystem effects of atmospheric N and S deposition. We predicted that the increased N loading to the treatment catchment would elevate input of organic matter, result in higher levels of coarse organic matter biomass, and increase litter processing rates in the treatment stream relative to the reference stream. We found that the streams draining BBWM did not have statistically different coarse organic matter input, biomass, or processing rates and we found only modest differences in export potential. System-level processing rates for maple (Acer spp.) litter were similar to rates previously quantified using litterbag methods. However, system-level processing rates for American beech (Fagus grandifolia) litter were an order of magnitude faster than rates measured with litterbags. This difference was likely due to movements of these leaves from riffle/runs and pools into debris dams, rather than differences in measurements of leaf tissue processing rates between methods. Organic matter dynamics of the intermittent streams at BBWM were similar to other forested, headwater streams. Our results indicate that the long-term N manipulation experiment at BBWM has not altered input, storage or processing of coarse organic matter in the treatment stream. Physical characteristics of these stream ecosystems appear to regulate organic matter dynamics rather than differences in nutrient chemistry.  相似文献   

4.
5.
1. To assess whether the reported slow breakdown of litter in tropical Cerrado streams is due to local environmental conditions or to the intrinsic leaf characteristics of local plant species, we compared the breakdown of leaves from Protium brasiliense, a riparian species of Cerrado (Brazilian savannah), in a local and a temperate stream. The experiment was carried out at the time of the highest litter fall in the two locations. An additional summer experiment was conducted in the temperate stream to provide for similar temperature conditions. 2. The breakdown rates (k) of P. brasiliense leaves in the tropical Cerrado stream ranged from 0.0001 to 0.0008 day−1 and are among the slowest reported. They were significantly (F = 20.12, P < 0.05) lower than in the temperate stream (0.0046–0.0055). The maximum ergosterol content in decomposing leaves in the tropical Cerrado stream was 106 μg g−1, (1.9% of leaf mass) measured by day 75, which was lower than in the temperate stream where maximum ergosterol content of 522 μg g−1 (9.5% of leaf mass) was achieved by day 30. The ATP content, as an indicator of total microbial biomass, was up to four times higher in the tropical Cerrado than in the temperate stream (194.0 versus 49.4 nmoles g−1). 3. Unlike in the temperate stream, leaves in the tropical Cerrado were not colonised by shredder invertebrates. However, in none of the experiments did leaves exposed (coarse mesh bags) and unexposed (fine mesh bags) to invertebrates differ in breakdown rates (F = 1.15, P > 0.05), indicating that invertebrates were unable to feed on decomposing P. brasiliense leaves. 4. We conclude that the slow breakdown of P. brasiliense leaves in the tropical Cerrado stream was because of the low nutrient content in the water, particularly nitrate (0.05 mgN L−1), which slows down fungal activity and to the low density of invertebrates capable of using these hard leaves as an energy source.  相似文献   

6.
7.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

8.
1. We investigated the effects of two features of leaf‐pack habitat structure (i.e. mass of a leaf pack and surface area of leaves comprising a leaf pack) and fish predation on colonisation of shredders and leaf breakdown rates in a coldwater stream. Packs were constructed of red maple (Acer rubrum) leaves. 2. A 2 × 3 × 3 factorial experiment was used to manipulate fish predation (exclusion and control cage), leaf‐pack mass (1, 3 and 5 g dry mass) and leaf surface area (small: approx. 17.9 cm2, medium: approx. 34.6 cm2, large: approx. 65.6 cm2). Exclusion cages had mesh on all sides, whereas control cages lacked mesh on two sides to provide access to fish. 3. Common shredders were Gammarus pseudolimnaeus, Pycnopsyche and Lepidostoma. Shredder biomass per leaf pack increased with the mass of a leaf pack (P < 0.001), but biomass per unit mass of leaf pack did not differ with leaf‐pack mass (P = 0.506). Shredder densities did not respond to the exclusion of fish (P > 0.7) or leaf surface area (P > 0.7), and interactions among treatment factors were not significant (P > 0.2). 4. Breakdown rates were lower for leaf packs comprised of small leaves (P < 0.001) and leaf packs with high mass (P = 0.001). Excluding fish did not significantly affect leaf breakdown rates (P = 0.293), and interactions among treatment factors were not significant (P > 0.3). Breakdown rates were highest when packs consisted of few leaves (i.e. leaf packs with large leaves and low mass) and were colonised by many shredders. 5. Fish predation was not an important factor controlling shredder densities in leaf packs over the spatiotemporal scale of our experiment. Nevertheless, we found shredder colonisation was proportional to leaf‐pack mass and breakdown rates were affected by leaf‐pack size (i.e. number of leaves in a pack). We suspect that fragmentation is the primary mechanism causing the breakdown rates to be dependent on leaf‐pack size.  相似文献   

9.
Large terrestrial consumers have direct and indirect effects on forest ecosystem function, but few studies have investigated the impacts of terrestrial consumers on freshwater ecosystems. In the Cape Breton Highlands of Nova Scotia, browsing by hyper‐abundant moose following a spruce budworm outbreak has transformed boreal forest into grasslands. We conducted a field study to investigate the potential for cross‐ecosystem effects of hyper‐abundant moose following budworm outbreak on small boreal stream ecosystem structure and function. With our field study, we tested the prediction that watersheds with higher levels of moose‐mediated grasslands in their sub‐basin would have higher stream temperatures, total nitrogen, electrical conductivity, periphyton biomass and macroinvertebrate abundances. While our data supported several of our predictions pertaining to moose impacts on the abiotic variables (i.e. temperature range, total nitrogen, electrical conductivity) we found evidence of variable moose impacts on the benthic community. Specifically, we observed lower relative abundance of predatory invertebrates in streams with high moose impacts compared to streams with low moose impacts in their watersheds but no evidence of moose impacts on the relative abundance of shredders, filterers, gatherers, and grazers. This empirical study fills a key gap in our understanding of spatial ecosystem ecology by providing insight into the effects of large terrestrial consumers across ecosystem boundaries with potential implications for landscape‐scale management of hyper‐abundant ungulates. Given the broad availability and improvement in remote sensing technology, the novel integration of remote sensing and field studies employed here may provide a roadmap for future studies of meta‐ecosystem dynamics.  相似文献   

10.
The relationship between caddisfly assemblage structure and four selected environmental variables (substrate, water depth, flow type and amount of the coarse particulate organic matter) was investigated in a Slovenian lowland stream. Caddisflies were sampled at four stream reaches according to selected microhabitat types. All together, 168 quantitative samples were taken at 21 sampling points between October 1998 and July 1999. Of 48 collected species, 30 were included in the analysis. Significant correlation was observed between species and environmental variables. As a complement to a CCA biplot representation, species assemblages within the community were also determined using cluster analysis. Nine groups and subgroups were established. Most caddisfly species prefer coarse substrate in shallow water (5–10 cm) with chute water flow, whereas few species were found on fine substrate in deep water. A significant positive correlation was found between mean substrate size and total number of species, and between indices of species richness and diversity, whereas depth did not show any correlation with these parameters. Seven species were found mostly in marginal habitats, whereas four (Potamophylax rotundipennis, Anabolia furcata, Athripsodes bilineatus and Lithax obscurus) did not show any strong preferences for selected parameters. In addition, habitat preferences were associated with the feeding types of the caddis larvae.  相似文献   

11.
Mining activities, particularly acid mine drainage, often result in adverse effects on stream diversity and ecosystem functioning, and increased concern about these effects has generated a focus on restoration of mine‐impacted waterways. However, many stream restoration projects have not led to increased stream diversity and ecological recovery. One reason for this failure may be that restoration practitioners focus on local environmental conditions and fail to consider the importance of dispersal as a driver of stream invertebrate composition. To test this hypothesis, we used a meta‐community analysis to compare the influence of the local stream conditions with the regional supply of colonists. Invertebrate communities and physico‐chemical conditions were sampled in 37 streams across a mine‐impact gradient on the Stockton Plateau, West Coast of New Zealand's South Island. We found that pH, temperature, dissolved metals, and sediment significantly influenced invertebrate community composition. Furthermore, the spatial location of streams was a good predictor of stream diversity and invertebrate communities, independent of local environmental conditions. This result indicates an important role for regional dispersal barriers in determining stream invertebrate communities. Consequently, consideration of both the locations and strategic preservation of future colonist source streams and potential dispersal barriers during mine planning would enhance post‐mining restoration.  相似文献   

12.
1. Scant information is available on leaf breakdown in streams of arid and semiarid regions, including the Mediterranean, where environmental heterogeneity can be high and the relationship between stream characteristics and leaf breakdown is poorly known. We tested the hypotheses that differences in leaf breakdown metrics would be substantially higher between mountain and lowland Mediterranean streams than among streams within each subregion and that variability among streams would be substantially higher in the lowlands, because permanent reaches in the semiarid lowland streams are rare and isolated. 2. We compared leaf breakdown and associated dynamics of nutrients, fungi and invertebrates in low‐order Mediterranean streams draining sub‐humid forests in the Sierra Nevada Mountains and nearby semiarid lowlands of south‐eastern Spain. Streams differed between the two subregions mainly in water ion content, temperature and riparian tree cover. We detected higher environmental heterogeneity among streams within the lowlands compared to the Sierra Nevada mountain range. In the lowlands, breakdown coefficients (k) of alder leaves spanned almost the entire range reported for this species from temperate streams, overlapping with less variable breakdown coefficients in the Sierra Nevada. 3. The high variability of k values among the lowland sites appeared to be caused primarily by variability in the composition and abundance of a few leaf‐consuming invertebrate taxa, particularly the snail Melanopsis praemorsa. Fungal and nutrient dynamics were less variable among sites within each subregion. 4. These results indicate that the critical condition for stream functional assessment of well‐constrained breakdown rates, or related metrics, could be met at reference sites within homogenous bio‐geo‐climatic regions such as the Sierra Nevada. By contrast, in heterogeneous areas such as the semiarid lowland streams, natural variability of breakdown rates can greatly exceed the magnitude of effects expected in response to anthropogenic disturbances.  相似文献   

13.
The importance of allochthonous organic matter for low order streams is described. Oberer Seebach is a second order stream, draining an uninhabitated and densly forrested catchment. Because of flood control the channel is free of debris dams since more than a century. The study site is characterized. Main emphasis is laid on the riparian vegetation and the distribution of dry and overflown channel areas in space and time. Amounts of leaf material, deposited on the sediment surface of the channel are significantly larger during defoliation (20 days) and shortly afterwards (accumulation period, 6.64 (110 days) and 29.42 g m2 DW (133 days, mean of five years) for wet and dry areas, respectively) than during the rest of the year (intermediate period, 0.98 and 3.94 g m2 (mean of five years) for wet and dry areas, respectively). Woody debris is too scarce to increase the retention capacity. Deposition of leaf material depends on the interaction of input (wind-drift and bank run off, 124 and 85 g m2 for the accumulation- and intermediate period, respectively), discharge regime and the relationship between dry and wet channel areas. Periodically inundated areas increase the retention capacity of the stream channel and are comparable with the interrelationship between stream and floodplain.  相似文献   

14.
15.
The mechanisms of leaf decay, leaf-associated macroinvertebrate community structure, leaf-associated microbial activity and physicochemical stream characteristics were investigated on a mid-Michigan headwater stream in summer. An undisturbed wooded site was compared with two agriculturally perturbed sites. Discharge, total suspended particulates, and nutrients were all higher and more variable throughout the season within the agricultural reaches. Leaf decay rates were higher at the agricultural sites and results suggest discharge abrasion was the major leaf processing mechanism at these sites while microbial decay and macroinvertebrate shredding appear to be the primary mediators of leaf weight loss at the wooded site. Total macroinvertebrate densities on leaf packs at the agricultural sites were 1.9 times the densities at the wooded site. It is suggested that experimentally introduced leaf packs acted as a lure for net-spinning invertebrates limited by stable substratum at the agricultural sites. Species shifts were observed from wooded reaches where Pychnopsyche spp., Gammarus, Ephemeroptera, Bezzia, and Nigronia serricornis were important, to downstream agricultural reaches which were dominated by Cheumatopsyche, Chironomidae, Elmidae, Hydracarina, Hemerodromia, and Caecidotea.  相似文献   

16.
This study evaluated if there are differences in leaf breakdown and invertebrate colonization among tree species differing in quality (toughness), and which factors could influence these differences. Common alder leaves decomposed significantly faster then either sweet chestnut or Spanish oak (k values of –0.0332, –0.0108, and –0.0112, respectively) during the first 2 months. Shredder abundance was highest when leaf mass remaining was 50%, and the samples clustered in mixed groups of sampling dates and leaf species, suggesting that stage of decomposition was an important factor influencing shredder colonization. During the first two months of decomposition, the physicochemical characteristics of leaf litter and the interaction between leaf toughness and the occurrence of frequent spates seemed to be the main factors affecting leaf breakdown rates in the stream. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The effects of seasonality and dilution stress on the functioning of Rambla Salada, a hypersaline Mediterranean stream in SE Spain, were evaluated. The stream is subject to diffuse freshwater inputs from the drainage of intensively irrigated agriculture in the catchment and periodic losses of water through an irrigation channel. Metabolic rates and the biomass of primary producers and consumers were estimated over a 2-year period. During the first year several dilution events occurred, while during the second year the salinity recovery reached predisturbance levels. Functional indicators were compared in the disturbance and recovery salinity periods. Primary production and respiration rates in the Rambla Salada ranged between 0.07–21.05 and 0.19–17.39 g O2 m−2 day−1, respectively. The mean values for these variables were 7.35 and 5.48 g O2 m−2 day−1, respectively. Mean net daily metabolism rate was 1.87 ± 0.52 g O2 m−2 day−1 and mean production/respiration ratio was 2.48 ± 1.1, reflecting autotrophic metabolism. The metabolic rates showed the typical seasonal pattern of Mediterranean open canopy streams. Therefore, gross primary production (GPP) and ecosystem respiration (ER) registered maximum values in summer, intermediate values in spring and autumn and minimum values in winter. The metabolic rates and biomass of consumers were greater in the disturbance period than in the recovery period. However, they did not show significant differences between periods due to their important dependence on seasonal cycle. Seasonality accounted for much of the temporal variability in GPP and ER (76% and 83% in the multiregression models, respectively). Light availability seems to be the most important factor for GPP and ER in the Rambla Salada. Autotrophic biomass responded more to variations in discharge and conductivity than to seasonal variations. In fact, it was severely affected by freshwater inputs after which the epipelic biomass decreased significantly and Cladophora glomerata proliferated rapidly. Epipelic algal biomass was the most sensitive parameter to dilution disturbance. Handling editor: Luigi Naselli-Flores  相似文献   

18.
1. Detecting hot spots of litter decomposition will promote understanding of litter processing in a heterogeneous system. To identify hot spots of leaf breakdown within a headwater stream reach, we examined the difference in leaf breakdown rate among four types of litter patches, one that formed in riffles and three that formed in pools (middle, alcove, edge), in different seasons. 2. Middle patches showed the highest breakdown rate in some seasons; the rate in middle patches was 1.5–4 times higher than in the other patches. Thus middle patches can be regarded as hot spots of leaf breakdown in the study reach. This result contrasted with other studies showing higher breakdown rate in riffles than in pools. 3. Significant relationships between abundance of caddisfly shredders and breakdown rate were observed in seasons when the rate differed among patch types. Greater abundance of Lepidostoma seems to be responsible for middle patches being hot spots of leaf breakdown. 4. It is expected that when the proportion of leaves retained in middle patches within a reach is higher, the breakdown rate of the entire reach will be increased. Clarifying how the proportion of leaves retained on middle patches within a reach varies temporally and spatially would improve our understanding of leaf breakdown in headwater streams.  相似文献   

19.
Riparian forest plantings are a well‐established restoration technique commonly used to stabilize banks and intercept nutrient flow from adjacent agricultural fields. Tree species planted for these efforts may not reflect mature forest communities within the same region. Given contemporary research on links between biodiversity and ecosystem functioning, we conducted a leaf‐litter decomposition study to investigate how mixing of detrital resources that reflect forest community composition would regulate in‐stream leaf litter. Leaf litter bags containing material from a mature forest (Liriodendron tulipifera, Acer rubrum, Quercus rubra, full factorial treatments = 7) and a restored riparian forest (Cornus sericea, Fraxinus pennsylvanica, Platanus occidentalis, full factorial treatments = 7) were deployed in a stream reach that experienced riparian reforestation in 2004. Litter from the restored riparian community had less mass remaining (45.28 ± 2.27%) than that from the mature riparian community (54.95 ± 2.19%) after 5 weeks. In addition, mixed litter treatments in the restored riparian community had less mass remaining (40.54 ± 2.37%) than single‐species treatments (51.80 ± 4.05%), a pattern not observed in the mature forest community. Results highlight the importance of planting mixed‐species assemblages as this structure may regulate processes such as decomposition and food‐web structure, processes often not targeted in the restoration plans.  相似文献   

20.
Four species of riparian vegetation (alder, birch, willow and poplar) were fertilized with nitrogen, phosphorus, nitrogen + phosphorus, or no fertilizer (control). The resulting leaf detritus (leached but not microbially colonized) was offered to a stream shredder, Hydatophylax variabilis (Trichoptera: Limnephilidae). In one experiment, shredder consumption of leaf detritus from different nutrient treatments (within tree species) was compared, and in a second experiment, consumption of different tree species (within nutrient treatments) was compared. Larvae preferred leaf detritus from nitrogen + phosphorus treatments (except in poplar where nitrogen treatment was preferred). Alder was preferred over other tree species for all treatments. Chemical and physical analyses of leaf litter showed differences between tree species and nutrient treatments in nutrient content, tannins and leaf toughness. Leaf consumption by larvae was positively associated with nitrogen content and negatively associated with condensed tannin content. Species composition and nutrient status of riparian vegetation may strongly influence detrital food webs in streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号