首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wu CP  Law NF  Siu WC 《Bioinformation》2008,2(9):412-416
Current DNA compression algorithms work by finding similar repeated regions within the DNA sequence and then encoding these regions together to achieve compression. Our study on chromosome sequence similarity reveals that the length of similar repeated regions within one chromosome is about 4.5% of the total sequence length. The compression gain is often not high because of these short lengths. It is well known that similarity exist among different regions of chromosome sequences. This implies that similar repeated sequences are found among different regions of chromosome sequences. Here, we study cross-chromosomal similarity for DNA sequence compression. The length and location of similar repeated regions among the sixteen chromosomes of S. cerevisiae are studied. It is found that the average percentage of similar subsequences found between two chromosome sequences is about 10% in which 8% comes from cross-chromosomal prediction and 2% from self-chromosomal prediction. The percentage of similar subsquences is about 18% in which only 1.2% comes from self-chromosomal prediction while the rest is from cross-chromosomal prediction among the 16 chromosomes studied. This suggests the importance of cross-chromosomal similarities in addition to self-chromosomal similarities in DNA sequence compression. An additional 23% of storage space could be reduced on average using self-chromosomal and cross-chromosomal predictions in compressing the 16 chromosomes of S. cerevisiae.  相似文献   

3.
4.
Purified RAG1 and RAG2 proteins can cleave DNA at V(D)J recombination signals. In dissecting the DNA sequence and structural requirements for cleavage, we find that the heptamer and nonamer motifs of the recombination signal sequence can independently direct both steps of the cleavage reaction. Proper helical spacing between these two elements greatly enhances the efficiency of cleavage, whereas improper spacing can lead to interference between the two elements. The signal sequences are surprisingly tolerant of structural variation and function efficiently when nicks, gaps, and mismatched bases are introduced or even when the signal sequence is completely single stranded. Sequence alterations that facilitate unpairing of the bases at the signal/coding border activate the cleavage reaction, suggesting that DNA distortion is critical for V(D)J recombination.  相似文献   

5.
In bacteria with circular chromosomes, homologous recombination events can lead to the formation of chromosome dimers. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover by two tyrosine recombinases, XerC and XerD, at a specific site on the chromosome, dif. Recombination depends on a direct contact between XerD and a cell division protein, FtsK, which functions as a hexameric double stranded DNA translocase. Here, we have investigated how the structure and composition of DNA interferes with Xer recombination activation by FtsK. XerC and XerD each cleave a specific strand on dif, the top and bottom strand, respectively. We found that the integrity and nature of eight bottom-strand nucleotides and three top-strand nucleotides immediately adjacent to the XerD-binding site of dif are crucial for recombination. These nucleotides are probably not implicated in FtsK translocation since FtsK could translocate on single stranded DNA in both the 5′–3′ and 3′–5′ orientation along a few nucleotides. We propose that they are required to stabilize FtsK in the vicinity of dif for recombination to occur because the FtsK–XerD interaction is too transient or too weak in itself to allow for XerD catalysis.  相似文献   

6.
Plasmid replication stimulates DNA recombination in Bacillus subtilis   总被引:23,自引:0,他引:23  
The effects of plasmid replication on the frequency of homologous recombination have been investigated. For that purpose Bacillus subtilis strains that carry in their chromosome directly repeated DNA sequences, and an integrated copy of plasmid pE194 either proximal or distal to the repeats, were constructed. The repeat consists either of 3.9 X 10(3) base pBR322 sequences or 2.1 X 10(3) base B. subtilis chromosomal sequences. As plasmid pE194 is naturally thermosensitive for replication, the activity of the replicon could be regulated. Recombination between the repeated sequences was infrequent (about 10(-4) per generation) when the integrated plasmid did not replicate. It was 20 to 450 times higher when the plasmid was allowed to replicate, provided that the repeats were in the proximity of the plasmid. These results show that plasmid replication stimulates DNA recombination.  相似文献   

7.
Cell extracts of FM3A mouse cells replicate polyomavirus (Py) DNA in the presence of immunoaffinity-purified Py large T antigen, deoxynucleoside triphosphates, ATP, and an ATP-generating system. This system was used to examine the effects of mutations within or adjacent to the Py core origin (ori) region in vitro. The analysis of plasmid DNAs containing deletions within the early-gene side of the Py core ori indicated that sequences between nucleotides 41 and 57 define the early boundary of Py DNA replication in vitro. This is consistent with previously published studies on the early-region sequence requirements for Py replication in vivo. Deleting portions of the T-antigen high-affinity binding sites A and B (between nucleotides 57 and 146) on the early-gene side of the core ori led to increased levels of replication in vitro and to normal levels of replication in vivo. Point mutations within the core ori region that abolish Py DNA replication in vivo also reduced replication in vitro. A mutant with a reversed orientation of the Py core ori region replicated in vitro, but to a lesser extent that wild-type Py DNA. Plasmids with deletions on the late-gene side of the core ori, within the enhancer region, that either greatly reduced or virtually abolished Py DNA replication in vivo replicated to levels similar to those of wild-type Py DNA plasmids in vitro. Thus, as has been observed with simian virus 40, DNA sequences needed for Py replication in vivo are different from and more stringent than those required in vitro.  相似文献   

8.
9.
Kim YJ  Hice RH  O'Brochta DA  Atkinson PW 《Genetica》2011,139(8):985-997
We have conducted a structure and functional analysis of the hobo transposable element of Drosophila melanogaster. A minimum of 141 bp of the left (L) end and 65 bp of the right (R) end of the hobo were shown to contain sequences sufficient for transposition. Both ends of hobo contain multiple copies of the motifs GGGTG and GTGGC and we show that the frequency of hobo transposition increases as a function of the copy number of these motifs. The R end of hobo contains a unique 12 bp internal inverted repeat that is identical to the hobo terminal inverted repeats. We show that this internal inverted repeat suppresses transposition activity in a hobo element containing an intact L end and only 475 bp of the R end. In addition to establishing cis-sequences requirements for transposition, we analyzed trans-sequence effects of the hobo transposase. We show a hobo transposase lacking the first 49 amino acids catalyzed hobo transposition at a higher frequency than the full-length transposase suggesting that, similar to the related Ac transposase, residues at the amino end of the transposase reduce transposition. Finally, we compared target site sequences of hobo with those of the related Hermes element and found both transposons have strong preferences for the same insertion sites.  相似文献   

10.
Cleavage of V(D)J recombination signals by purified RAG1 and RAG2 proteins permits the dissection of DNA structure and sequence requirements. The two recognition elements of a signal (nonamer and heptamer) are used differently, and their cooperation depends on correct helical phasing. The nonamer is most important for initial binding, while efficient nicking and hairpin formation require the heptamer sequence. Both nicking and hairpin formation are remarkably tolerant of variations in DNA structure. Certain flanking sequences inhibit hairpin formation, but this can be bypassed by base unpairing, and even a completely single-stranded signal sequence is well utilized. We suggest that DNA unpairing around the signal-coding border is essential for the initiation of V(D)J combination.  相似文献   

11.
Recombination is thought to occur only rarely in animal mitochondrial DNA (mtDNA). However, detection of mtDNA recombination requires that cells become heteroplasmic through mutation, intramolecular recombination or 'leakage' of paternal mtDNA. Interspecific hybridization increases the probability of detecting mtDNA recombinants due to higher levels of sequence divergence and potentially higher levels of paternal leakage. During a study of historical variation in Atlantic salmon (Salmo salar) mtDNA, an individual with a recombinant haplotype containing sequence from both Atlantic salmon and brown trout (Salmo trutta) was detected. The individual was not an F1 hybrid but it did have an unusual nuclear genotype which suggested that it was a later-generation backcross. No other similar recombinant haplotype was found from the same population or three neighbouring Atlantic salmon populations in 717 individuals collected during 1948-2002. Interspecific recombination may increase mtDNA variability within species and can have implications for phylogenetic studies.  相似文献   

12.
Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.  相似文献   

13.
To test the effects of theta-type replication on homologous DNA recombination, we integrated in the chromosome of Bacillus subtilis a structure comprising a conditional replication region and direct repeats of ∼ 4 kb. The replicon was derived from a broad-host-range plasmid, pAMβ1, which replicates by a unidirectional theta mechanism and is thermosensitive. The direct repeats were derived from plasmid pBR322 and flanked the chloramphenicol-resistance gene of plasmid pC194. Recombination between the repeats could therefore lead to a loss of the resistance gene or the appearance of additional repeats. The integrated replicon was active at the permissive temperature, and ∼ 25% of the integrated plasmids could be isolated as Y-shaped molecules after restriction, having a branch at the replication origin. Replicon activity stimulated recombination four- to fivefold, as estimated from the proportion of chloramphenicol-sensitive cells at the restrictive and permissive temperature, and also led to the appearance of additional direct repeats. We conclude that theta-type replication stimulates homologous recombination and suggest that many or even most recombination events between long homologous sequences present in a bacterial genome may be the consequence of DNA replication.  相似文献   

14.
Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein, which binds both single-stranded (ss) and double-stranded (ds) DNA and facilitates the formation of higher order protein–DNA complexes in vitro. LrpC binds at different sites within the same DNA molecule promoting intramolecular ligation. When bound to separate molecules, it promotes intermolecular ligation, and joint molecule formation between a circular ssDNA and a homologous ssDNA-tailed linear dsDNA. LrpC binding showed a higher affinity for 4-way (Holliday) junctions in their open conformation, when compared with curved dsDNA. Consistent with these biochemical activities, an lrpC null mutant strain rendered cells sensitive to DNA damaging agents such as methyl methanesulfonate and 4-nitroquinoline-1-oxide, and showed a segregation defect. These findings collectively suggest that LrpC may be involved in DNA transactions during DNA repair and recombination.  相似文献   

15.
Repair by recombination of DNA containing a palindromic sequence   总被引:6,自引:1,他引:5  
We report here that homologous recombination functions are required for the viability of Escherichia coli cells maintaining a 240 bp chromosomal inverted repeat (palindromic) sequence. Wild-type cells can successfully replicate this palindrome but recA , recB or recC mutants carrying the palindrome are unviable. The dependence on homologous recombination for cell viability is overcome in sbcC mutants. Directly repeated copies of the DNA containing the palindrome are rapidly resolved to single copies in wild-type cells but not in sbcC mutants. Our results suggest that double-strand breaks introduced at the palindromic DNA sequence by the SbcCD nuclease are repaired by homologous recombination. The repair is conservative and the palindrome is retained in the repaired chromosome. We conclude that SbcCD can attack secondary structures but that repair conserves the DNA sequence with the potential to fold.  相似文献   

16.
In fission yeast two RAD52 homologs have been identified, rad22A+ and rad22B+. Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B+ in mitotically dividing cells is very low in comparison with rad22A+ but is strongly enhanced after induction of meiosis, in contrast to rad22A+. Rad22B mutant cells are not hypersensitive to DNA-damaging agents (X-rays, UV and cisplatin) and display normal levels of recombination. In these respects the Schizosaccharomyces pombe rad22B mutant resembles the weak phenotype of vertebrate cells deficient for RAD52. Mutation of rad22A+ leads to severe sensitivity to DNA-damaging agents and to defects in recombination. In a rad22Arad22B double mutant a further increase in sensitivity to DNA-damaging agents and additional mitotic recombination defects were observed. The data presented here indicate that Rad22A and Rad22B have overlapping roles in repair and recombination, although specialized functions for each protein cannot be excluded.  相似文献   

17.
The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions.  相似文献   

18.
19.
Summary The illegitimate integration of plasmid pGG20 (the hybrid between Staphylococcus aureus plasmid pE194 and Escherichia coli plasmid pBR322) into the Bacillus subtilis chromosome was studied. It was found that nucleotide sequences of both parental plasmids could be involved in this process. The recombinant DNA junctions between plasmid pGG20 and the chromosome were cloned and their nucleotide sequences were determined. The site of recombination located on the pBR322 moiety carried a short region (8 bp) homologous with the site on the chromosome. The nucleotide sequences of the pE194 recombination sites did not share homology with chromosomal sequences involved in the integration process. Two different pathways of illegitimate recombination in B. subtilis are suggested.  相似文献   

20.
The B. subtilis DeltahelD allele rendered cells proficient in transformational recombination and moderately sensitive to methyl methanesulfonate when present in an otherwise Rec(+) strain. The DeltahelD allele was introduced into rec-deficient strains representative of the alpha (recF strain), beta (addA addB), gamma (recH), epsilon (DeltarecU), and zeta (DeltarecS) epistatic groups. The DeltahelD mutation increased the sensitivity to DNA-damaging agents of addAB, DeltarecU, and DeltarecS cells, did not affect the survival of recH cells, and decreased the sensitivity of recF cells. DeltahelD also partially suppressed the DNA repair phenotype of other mutations classified within the alpha epistatic group, namely the recL, DeltarecO, and recR mutations. The DeltahelD allele marginally reduced plasmid transformation (three- to sevenfold) of mutations classified within the alpha, beta, and gamma epistatic groups. Altogether, these data indicate that the loss of helicase IV might stabilize recombination repair intermediates formed in the absence of recFLOR and render recFLOR, addAB, and recH cells impaired in plasmid transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号