首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.  相似文献   

2.
For the five principal prostanoids PGD2, PGE2, PGF2alpha, prostacyclin and thromboxane A2 eight receptors have been identified that belong to the family of G-protein-coupled receptors. They display an overall homology of merely 30%. However, single amino acids in the transmembrane domains such as an Arg in the seventh transmembrane domain are highly conserved. This Arg has been identified as part of the ligand binding pocket. It interacts with the carboxyl group of the prostanoid. The aim of the current study was to analyze the potential role in ligand binding of His-81 in the second transmembrane domain of the rat PGF2alpha receptor, which is conserved among all PGF2alpha receptors from different species. Molecular modeling suggested that this residue is located in close proximity to the ligand binding pocket Arg 291 in the 7th transmembrane domain. The His81 (H) was exchanged by site-directed mutagenesis to Gln (Q), Asp (D), Arg (R), Ala (A) and Gly (G). The receptor molecules were N-terminally extended by a Flag epitope for immunological detection. All mutant proteins were expressed at levels between 50% and 80% of the wild type construct. The H81Q and H81D receptor bound PGF2alpha with 2-fold and 25-fold lower affinity, respectively, than the wild type receptor. Membranes of cells expressing the H81R, H81A or H81G mutants did not bind significant amounts of PGF2alpha. Wild type receptor and H81Q showed a shallow pH optimum for PGF2alpha binding around pH 5.5 with almost no reduction of binding at higher pH. In contrast the H81D mutant bound PGF2alpha with a sharp optimum at pH 4.5, a pH at which the Asp side chain is partially undissociated and may serve as a hydrogen bond donor as do His and Gln at higher pH values. The data indicate that the His-81 in the second transmembrane domain of the PGF2alpha receptor in concert with Arg-291 in the seventh transmembrane domain may be involved in ligand binding, most likely not by ionic interaction with the prostaglandin's carboxyl group but rather as a hydrogen bond donor.  相似文献   

3.
Melanocortin-3 receptor (MC3R), primarily expressed in the hypothalamus, plays an important role in the regulation of energy homeostasis. MC3R-deficient (MC3R(-)(/)(-)) mice demonstrate increased fat mass, higher feeding efficiency, hyperleptinaemia, and mild hyperinsulinism. At least one specific mutation of MC3R has been identified to be associated with human obesity. Functional analysis of this altered MC3R (I183N) has indicated that the mutation completely abolishes agonist-mediated receptor activation. However, the specific molecular determinants of MC3R responsible for ligand binding and receptor signaling are currently unknown. The present study is to determine the structural aspects of MC3R responsible for ligand binding and receptor signaling. On the basis of our theoretical model for MC1R, using mutagenesis, we have examined 19 transmembrane domain amino acids selected for these potential roles in ligand binding and receptor signaling. Our results indicate that (i) substitutions of charged amino acid residues E131 in transmembrane domain 2 (TM2), D154 and D158 in TM3, and H298 in TM6 with alanine dramatically reduced NDP-MSH binding affinity and receptor signaling, (ii) substitutions of aromatic amino acids F295 and F296 in TM6 with alanine also significantly decreased NDP-MSH binding and receptor activity, (iii) substitutions of D121in TM2 and D332 in TM7 with alanine resulted in the complete loss of ligand binding, ligand induced receptor activation, and cell surface protein expression, and (iv) interestingly, substitution of L165 in TM3 with methionine or alanine switched antagonist SHU9119 into a receptor agonist. In conclusion: Our results suggest that TM3 and TM6 are important for NDP-MSH binding, while D121 in TM2 and D332 in TM7 are crucial for receptor activity and signaling. Importantly, L165 in TM3 is critical for agonist or antagonist selectivity. These results provide important information about the molecular determinants of hMC3R responsible for ligand binding and receptor signaling.  相似文献   

4.
In this study, we have further delineated the domains of the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine co-agonist binding site. Taking an iterative approach, we have constructed truncation mutants of the NR1 subunit, transiently expressed them in HEK-293 cells, and determined the binding of the glycine site antagonist [3H]L-689,560. Amino acids 380-811 were sufficient to form a glycine binding site with affinities for [3H]L-689,560 and glycine that were not significantly different from wild-type NR1. More extensive deletions, from either the amino- or the carboxy-terminal end, resulted in loss of ligand binding. Additional constructs were made starting from amino acids 380-843 of NR1, replacing the transmembrane (TMI-TMIII) domain with intervening linker sequences while retaining the TMIV domain so as to anchor the polypeptide to the membrane. Although robust amounts of polypeptides were synthesised by transfected cells, only low levels of [3H]L-689,560 binding sites could be detected. This suggests that only a small proportion of the synthesised polypeptide folds in the appropriate manner so as to form a ligand binding site. These data indicate that although it is possible to reduce the glycine binding site to minimal so-called S1 and S2 domains, efficient folding of the polypeptide so as to form a ligand binding site may require sequences within the TMI-TMIII domain.  相似文献   

5.
The human platelet alpha 2-adrenergic receptor is an integral membrane protein which binds epinephrine. The gene for this receptor has been cloned, and the primary structure is thus known [Kobilka et al. (1987) Science 238, 650-656]. A model of its secondary structure predicts that the receptor has seven transmembrane spanning domains. By covalent labeling and peptide mapping, we have identified a region of the receptor that is directly involved with ligand binding. Partially purified preparations of the receptor were covalently radiolabeled with either of two specific photoaffinity ligands: [3H]SKF 102229 (an antagonist) or p-azido[3H]clonidine (an agonist). The radiolabeled receptors were then digested with specific endopeptidases, and peptides containing the covalently bound radioligands were identified. Lysylendopeptidase treatment of [3H]SKF 102229 labeled receptor yielded one peptide of Mr 2400 as the product of a complete digest. Endopeptidase Arg-C gave a labeled peptide of Mr 4000, which was further digested to the Mr 2400 peptide by additional treatment with lysylendopeptidase. Using p-azido[3H]clonidine-labeled receptor, a similar Mr 2400 peptide was obtained by lysylendopeptidase cleavage. This Mr 2400 peptide corresponds to the fourth transmembrane spanning domain of the receptor. These data suggest that this region forms part of the ligand binding domain of the human platelet alpha 2-adrenergic receptor.  相似文献   

6.
Tritium-labeled (+)-pentazocine ([3H]-1b) of specific activity 26.6 Ci/mmol was synthesized in 3 steps starting with (+)-normetazocine (2) of defined optical purity. [3H]-1b has been characterized as a highly selective ligand for labeling of sigma receptors. Competition data revealed that [3H]-1b could be displaced from guinea pig brain membrane preparations with a number of commonly used sigma receptor ligands. [3H]-1b exhibited saturable, enantioselective binding with a Kd of 5.13 +/- 0.97 nM and a Bmax of 1146 +/- 122 fmol/mg protein. Phencyclidine (PCP) displaced [3H]-1b with low affinity while MK-801 was inactive, thus indicating insignificant activity at the PCP-binding site; apomorphine failed to displace [3H]-1b indicating lack of dopamine receptor cross-reactivity. Since the affinity of [3H]-1b is about 6 times that of the two commonly employed sigma ligands ((+)-3-[3H]PPP and [3H]DTG) and since it is more selective for sigma receptors than the benzomorphan [3H]SKF-10,047, it represents the first example of a highly selective benzomorphan based sigma receptor ligand. [3H]-1b should prove useful for further study of the structure and function of sigma receptors.  相似文献   

7.
The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor-binding domains.  相似文献   

8.
Specific binding sites for [3H]-1,3 di-ortho-tolylguanidine ([3H]-DTG), a selective radiolabeled sigma receptor ligand, were detected and characterized in sheep pineal gland membranes. The binding of [3H]-DTG to sheep pineal membranes was rapid and reversible with a rate constant for association (K+1) at 25 degrees C of 0.0052 nM-1.min-1 and rate constant for dissociation (K-1) 0.0515 min-1, giving a Kd (K-1/K+1) of 9.9 nM. Saturation studies demonstrated that [3H]-DTG binds to a single class of sites with an affinity constant (Kd) of 27 +/- 3.4 nM, and a total binding capacity (Bmax) of 1.39 +/- 0.03 pmol/mg protein. Competition experiments showed that the relative order of potency of compounds for inhibition of [3H]-DTG binding to sheep pineal membranes was as follows: trifluoperazine = DTG greater than haloperidol greater than pentazocine greater than (+)-3-PPP greater than (+/-)SKF 10,047. Some steroids (testosterone, progesterone, deoxycorticosterone) previously reported to bind to the sigma site in brain membranes were very weak inhibitors of [3H]-DTG binding in the present study. The results indicate that [3H]-DTG binding sites having the characteristics of sigma receptors are present in sheep pineal gland. The physiological importance of these sites in regulating the synthesis of the pineal hormone melatonin awaits further study.  相似文献   

9.
We used in vivo oxidative cross-linking of engineered cysteine pairs to assess conformational changes in the four-helix transmembrane domain of chemoreceptor Trg. Extending previous work, we searched for and found a fourth cross-linking pair that spanned the intrasubunit interface between transmembrane helix 1 (TM1) and its partner TM2. We determined the effects of ligand occupancy on cross-linking rate constants for all four TM1-TM2 diagnostic pairs in conditions that allowed the formation of receptor-kinase complexes for the entire cellular complement of Trg. Occupancy altered all four rates in a pattern that implicated sliding of TM2 relative to TM1 towards the cytoplasm as the transmembrane signalling movement in receptor-kinase complexes. Transmembrane signalling can be reduced or induced by single amino acid substitutions in the ligand-binding region of the periplasmic domain of Trg. We determined the effects of these substitutions on conformation in the transmembrane domain and on ligand-induced changes using the diagnostic TM1-TM2 cysteine pairs. Effects on rates of in vivo cross-linking showed that induced signalling substitutions altered the relative positions of TM1 and TM2 in the same way as ligand binding, and reduced signalling substitutions blocked or attenuated the ligand-induced shift. These results provide strong support for the helical sliding model of transmembrane signalling.  相似文献   

10.
A specific H-bonding network formed between the central regions of transmembrane domain 6 and transmembrane domain 7 has been proposed to be critical for stabilizing the inactive state of glycoprotein hormone receptors. Many different constitutively activating TSH receptor point mutations have been identified in hyperfunctioning thyroid adenomas in the lower portion of transmembrane domain 6. Position D633 in transmembrane domain 6 of the human TSH receptor is the only one in which four different constitutively activating amino acid exchanges have been identified. Further in vitro substitutions led to constitutive activation of the TSH receptor (D633Y, F, C) as well as to the first inactivating TSH receptor mutation in transmembrane domain 6 without changes of membrane expression or TSH binding (D633R). Molecular modeling of this inactivating TSH receptor mutation revealed potential interaction partners of R633 in transmembrane domain 3 and/or transmembrane domain 7, presumably via hydrogen bonds that could be responsible for locking the TSH receptor in a completely inactive state. To further elucidate the H-bond network that most likely maintains the inactive state of the TSH receptor, we investigated these potential interactions by generating TSH receptor double mutants designed to break up possible H bonds. We excluded S508 in transmembrane domain 3 as a possible interaction partner of R633. In contrast, a partial response to TSH stimulation was rescued in a receptor construct with the double-substitution D633R/N674D. Our results therefore confirm the H bond between position 633 in transmembrane domain 6 and 674 in transmembrane domain 7 suggested by molecular modeling of the inactivating mutation D633R. Moreover, the mutagenesis results, together with a three-dimensional structure model, indicate that for TSH receptor activation and G protein-coupled signaling, at least one free available carboxylate oxygen is required as a hydrogen acceptor atom at position 674 in transmembrane domain 7.  相似文献   

11.
Y Itzhak  S Alerhand 《FASEB journal》1989,3(7):1868-1872
The existence of multiple receptor sites for the psychotomimetic agents phencyclidine (PCP) and some opiate-benzomorphans such as (+)N-allylnormetazocine ([+]SKF 10,047) in the mammalian central nervous system is well documented. These are: 1) sigma/PCP (sigma p) site, which binds both PCP and psychotomimetic opiates but not antipsychotics such as haloperidol, 2) PCP site, which selectively binds PCP analogs, and 3) sigma/haloperidol (sigma h) site, for which certain antipsychotics and (+)SKF 10,047, but not PCP analogs, display high affinity. In this study we examined the regulation of these receptor sites after chronic treatment of mice with either PCP or haloperidol. The following radiolabeled ligands were used to assess binding to the various receptor subtypes: [3H]-1-[1-[3-hydroxyphenyl)cyclohexyl]piperidine ([3H]PCP-3-OH; sigma p and PCP sites), [3H]thienyl-phencyclidine ([3H]TCP; PCP site), (+)-[3H]SKF 10,047 (sigma p and sigma h sites), and [3H]haloperidol (sigma h and D-2 dopamine receptors). Treatment of mice for 1, 7, 14, and 21 days with PCP (10 mg.kg-1.day-1) failed to induce variations in sigma p, sigma h, and PCP receptor binding. However, similar treatment with haloperidol (4 mg.kg-1.day-1) induced: 1) complete elimination of the binding to sigma h sites, 2) up-regulation of D-2 dopamine receptors, and 3) no change in sigma p and PCP receptor binding after 14 or 21 days of treatment. However, a single day of haloperidol treatment or in vitro incubation of mouse brain membranes with haloperidol failed to alter receptor binding. This study suggests that prolonged treatment of mice with haloperidol induces a loss in sigma h receptors that are presumably associated with certain psychotomimetic effects. This phenomenon is accompanied by an up-regulation of D-2 dopamine receptors.  相似文献   

12.
The inositol-1,4,5-triphosphate (InsP3) receptor consists of a homotetramer of highly conserved 313 kd subunits that contain multiple transmembrane regions in the C-terminal part of the protein. The receptor was expressed in COS cells and its domain structure was studied by mutagenesis. Deletion of the transmembrane regions from the receptor results in the synthesis of a soluble receptor protein that efficiently binds InsP3 but which instead of associating into homotetramers remains monomeric. This result suggests a role for the transmembrane regions in the association of the receptor subunits into tetramers but not in ligand binding. To localize the ligand binding site, further cDNAs encoding truncated receptor proteins were constructed. Assays of InsP3 binding to these truncated InsP3 receptors revealed that sequences in the N-terminal fourth of the InsP3 receptor are sufficient for ligand binding. Accordingly, each subunit of the InsP3 receptor homotetramer contains an independent ligand binding site that is located on the N-terminal ends of each subunit and is separated from the putative channel-forming transmembrane regions by greater than 1400 amino acids. Gel filtration experiments demonstrate a large conformational change of the receptor as a function of ligand binding, suggesting a mechanism by which ligand binding might cause channel opening.  相似文献   

13.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

14.
High-affinity binding sites (apparent KD 2.87 nM) for [3H]desmethylimipramine ([3H]DMI), have been demonstrated and characterized in membrane preparations of bovine adrenal medulla. The binding of [3H]DMI improved upon pretreatment of the membrane with KCl and was saturable, sodium dependent, and potently inhibited by nisoxetine and imipramine. [3H]DMI binding was also inhibited by various phencyclidine (PCP)- and (or) sigma-receptor ligands, with the following order of potency: haloperidol > rimcazole > (-)-butaclamol > dextromethorphan > MK-801 > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP) > PCP > N-(2-thienyl)cyclohexyl-3,4-piperidine (TCP) > (+)-SKF-10047 > (-)-SKF-10047. The inhibition produced by sigma ligands was not attributed to stimulation of either sigma 1- or sigma 2-receptors, owing to inactivity of the selective sigma-receptor ligands (+)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG). The inhibition of [3H]DMI binding by sigma- and PCP-receptor ligands was not attributed to PCP1- or PCP2-receptor stimulation, owing to the decreased potency (100-fold) of these ligands in [3H]DMI assays compared with the affinity for brain PCP1 sites, and the ineffectiveness of the PCP2-ligand N-(1-(2-benzo(b)thiophenyl)cyclohexyl)piperidine (BTCP). Scatchard analysis of the inhibition by the sigma-ligands haloperidol and (+)-3-PPP, as well as the PCP1 receptor ligand MK-801, demonstrated noncompetitive interaction with the site bound by [3H]DMI. These studies indicate that bovine adrenomedullary membranes possess a specific receptor for the noradrenaline uptake inhibitor [3H]DMI, which is sensitive to allosteric modulation produced by PCP and sigma-ligands.  相似文献   

15.
Using chimeras of the mouse prostaglandin (PG) I receptor (mIP) and the mouse PGD receptor (mDP), we previously revealed that the cyclopentane ring recognition by these receptors is specified by a region from the first to third transmembrane domain of each receptor; recognition by this region of mIP is broad, accommodating the D, E, and I types of cyclopentane rings, whereas that of mDP binds the D type of PGs alone (Kobayashi, T., Kiriyama, M., Hirata, T., Hirata, M., Ushikubi, F., and Narumiya, S. (1997) J. Biol. Chem. 272, 15154-15160). In the present study, we performed a more detailed chimera analysis, and narrowed the domain for the ring recognition to a region from the first transmembrane domain to the first extracellular loop. One chimera with the replacement of the second transmembrane domain and the first extracellular loop of mDP with that of mIP bound only iloprost. The amino acid substitutions in this chimera suggest that Ser(50) in the first transmembrane domain of mIP confers the broad ligand recognition of mIP and that Lys(75) and Leu(83) in the second transmembrane domain of mDP confer the high affinity to PGD(2) and the strict specificity of ligand binding of mDP, respectively.  相似文献   

16.
We report the use of thiol chemistry to define specific and reversible disulfide interactions of Cys-substituted NK2 receptor mutants with analogues of neurokinin A (NKA) containing single cysteine substitutions. The NKA analogues were N-biotinylated to facilitate the rapid detection of covalent analogue-receptor interactions utilizing streptavidin reactivity. N-biotinyl-[Tyr1,Cys9]NKA, N-biotinyl-[Tyr1,Cys10]NKA were both found to reversibly disulfide bond to the NK2 receptor mutant Met297 --> Cys. This is consistent with the improved affinities of these particular analogues for the Met297 --> Cys receptor as compared with those for the wild-type and Met297 --> Leu receptors. In our three-dimensional model, Met297 occupies the equivalent position in helix 7 to the retinal binding Lys296 in rhodopsin. Binding of the NK2 receptor antagonist [3H]SR 48968 and of 125I-NKA was used to characterize additional receptor mutants. It seems that the aromatic residues Trp99 (helix 3), His198 (helix 5), Tyr266, His267, and Phe270 play an important role in NKA binding as structural determinants. The existence of overlapping SR 48968 and NKA binding sites is also evident. These data suggest that the peptide binding site of the NK2R is at least in part formed by residues buried deep within the transmembrane bundle and that this intramembranous binding domain may correspond to the binding sites for substantially smaller endogenous GPCR ligands.  相似文献   

17.
《Life sciences》1995,57(21):PL333-PL337
The receptor binding specificity and neuroanatomical distribution of [3H]NE-100 (N, N- dipropyl-2- [4- methoxy-3- (2- phenylethoxy) phenyl] ethylamine monohydrochloride)-labeled sigma receptor in guinea pig brain were examined using quantitative autoradiography. NE-100 potently inhibited [3H]NE-100 binding to slide-mounted sections of guinea pig brain with the IC50 value of 1.09 nM, therefore, NE-100 apparently has high affinity binding sites. Competition studies, under conditions similar to those used to visualize the receptor, yielded the following rank order of potency: NE-100 > haloperidol > DuP734 > (+)pentazocine ⪢ (−)pentazocine. Non-sigma ligands such as phencyclidine (PCP), MK-801 and (−)sulpiride had negligible affinities for [3H]NE-100 binding sites. High densities of [3H]NE-100 binding sites displaceable by haloperidol were present in the granule layer of the cerebellum, the cingulate cortex, the CA3 region of the hippocampus, the hypothalamus and the pons. The distribution of [3H]NE-100 binding sites was consistent with that of [3H](+)pentazocine, a sigma1 ligand. These sigma sites may possibly be related to various aspects of schizophrenia.  相似文献   

18.
J Wess  S Nanavati  Z Vogel    R Maggio 《The EMBO journal》1993,12(1):331-338
Most G protein-coupled receptors contain a series of highly conserved proline and tryptophan residues within their hydrophobic transmembrane domains (TMD I-VII). To study their potential role in ligand binding and receptor function, the rat m3 muscarinic acetylcholine receptor was used as a model system. A series of mutant receptors in which the conserved proline and tryptophan residues were individually replaced with alanine and phenylalanine, respectively, was created and transiently expressed in COS-7 cells. [3H]N-methylscopolamine ([3H]NMS) saturation binding studies showed that three of the seven mutant receptors studied (Pro242-->Ala, TMD V; Pro505-->Ala, TMD VI; Pro540-->Ala, TMD VII) were expressed at 35-100 times lower levels than the wild-type receptor while displaying 'm3-like' antagonist binding affinities. Pro201-->Ala (TMD IV) showed drastically reduced binding affinities (up to 450-fold) for both muscarinic agonists and antagonists. Whereas most mutant receptors retained strong functional activity, Pro540-->Ala (TMD VII) was found to be severely impaired in its ability to stimulate carbachol-induced phosphatidyl inositol hydrolysis (Emax approximately 25% of wild type m3). Interestingly, this mutant receptor bound muscarinic agonists with 7- to 19-fold higher affinities than the wild type receptor. The Trp-->Phe substitutions (Trp192-->Phe, TMD IV; Trp503-->Phe, TMD VI; Trp530-->Phe, TMD VII) resulted in less pronounced changes (compared with the Pro-->Ala mutant receptors) in both ligand binding and receptor function. Our data indicate that the proline residues that are highly conserved across the entire superfamily of G protein-coupled receptors play key roles in receptor expression, ligand binding and receptor activation.  相似文献   

19.
Gonzalez J  Rambhadran A  Du M  Jayaraman V 《Biochemistry》2008,47(38):10027-10032
The structural investigations using the soluble ligand binding domain of the AMPA subtype of the glutamate receptor have provided invaluable insight into the mechanistic pathway by which agonist binding to this extracellular domain mediates the formation of cation-selective channels in this protein. These structures, however, are in the absence of the transmembrane segments, the primary functional component of the protein. Here, we have used a modified luminescence resonance energy transfer based method to obtain distance changes due to agonist binding in the ligand binding domain in the presence of the transmembrane segments. These distance changes show that the cleft closure conformational change observed in the isolated ligand binding domain upon binding agonist is conserved in the receptor with the channel segments, thus establishing that the isolated ligand binding domain is a good model of the domain in the receptor containing the transmembrane segments.  相似文献   

20.
The gamma-amino-n-butyric acid type B (GABA(B)) receptor is composed of two subunits, GABA(B)1 and GABA(B)2, belonging to the family 3 heptahelix receptors. These proteins possess two domains, a seven transmembrane core and an extracellular domain containing the agonist binding site. This binding domain is likely to fold like bacterial periplasmic binding proteins that are constituted of two lobes that close upon ligand binding. Here, using molecular modeling and site-directed mutagenesis, we have identified residues in the GABA(B)1 subunit that are critical for agonist binding and activation of the heteromeric receptor. Our data suggest that two residues (Ser(246) and Asp(471)) located within lobe I form H bonds and a salt bridge with carboxylic and amino groups of GABA, respectively, demonstrating the pivotal role of lobe I in agonist binding. Interestingly, our data also suggest that a residue within lobe II (Tyr(366)) interacts with the agonists in a closed form model of the binding domain, and its mutation into Ala converts the agonist baclofen into an antagonist. These data demonstrate the pivotal role played by the GABA(B)1 subunit in the activation of the heteromeric GABA(B) receptor and are consistent with the idea that a closed state of the binding domain of family 3 receptors is required for their activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号