首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.  相似文献   

2.
Mechanisms underlying changes in HDL composition caused by obesity are poorly defined, partly because mice lack expression of cholesteryl ester transfer protein (CETP), which shuttles triglyceride and cholesteryl ester between lipoproteins. Because menopause is associated with weight gain, altered glucose metabolism, and changes in HDL, we tested the effect of feeding a high-fat diet (HFD) and ovariectomy (OVX) on glucose metabolism and HDL composition in CETP transgenic mice. After OVX, female CETP-expressing mice had accelerated weight gain with HFD-feeding and impaired glucose tolerance by hyperglycemic clamp techniques, compared with OVX mice fed a low-fat diet (LFD). Sham-operated mice (SHAM) did not show HFD-induced weight gain and had less glucose intolerance than OVX mice. Using shotgun HDL proteomics, HFD-feeding in OVX mice had a large effect on HDL composition, including increased levels of apoA2, apoA4, apoC2, and apoC3, proteins involved in TG metabolism. These changes were associated with decreased hepatic expression of SR-B1, ABCA1, and LDL receptor, proteins involved in modulating the lipid content of HDL. In SHAM mice, there were minimal changes in HDL composition with HFD feeding. These studies suggest that the absence of ovarian hormones negatively influences the response to high-fat feeding in terms of glucose tolerance and HDL composition. CETP-expressing mice may represent a useful model to define how metabolic changes affect HDL composition and function.  相似文献   

3.
4.
Anti-obese action of raspberry ketone   总被引:3,自引:0,他引:3  
Raspberry ketone (4-(4-hydroxyphenyl) butan-2-one; RK) is a major aromatic compound of red raspberry (Rubus idaeus). The structure of RK is similar to the structures of capsaicin and synephrine, compounds known to exert anti-obese actions and alter the lipid metabolism. The present study was performed to clarify whether RK helps prevent obesity and activate lipid metabolism in rodents. To test the effect on obesity, our group designed the following in vivo experiments: 1) mice were fed a high-fat diet including 0.5, 1, or 2% of RK for 10 weeks; 2) mice were given a high-fat diet for 6 weeks and subsequently fed the same high-fat diet containing 1% RK for the next 5 weeks. RK prevented the high-fat-diet-induced elevations in body weight and the weights of the liver and visceral adipose tissues (epididymal, retroperitoneal, and mesenteric). RK also decreased these weights and hepatic triacylglycerol content after they had been increased by a high-fat diet. RK significantly increased norepinephrine-induced lipolysis associated with the translocation of hormone-sensitive lipase from the cytosol to lipid droplets in rat epididymal fat cells. In conclusion, RK prevents and improves obesity and fatty liver. These effects appear to stem from the action of RK in altering the lipid metabolism, or more specifically, in increasing norepinephrine-induced lipolysis in white adipocytes.  相似文献   

5.
Identification of the protein factors that regulate the adipogenesis and lipid metabolism of adipose tissue is critical for the understanding of the physiology and pathology of obesity and energy homeostasis. In this study, we found that G protein coupled receptor (GPCR) kinase 5 (GRK5) was expressed at a relatively high level in the white adipose tissue. When fed on a high-fat diet, GRK5(-/-) mice gained significantly less weight and had decreased WAT mass than their wild type littermates, which could not be attributed to alterations in food consumption or energy expenditure. However, GRK5(-/-) mice showed a 30-70% decreased expression of lipid metabolism and adipogenic genes in WAT. Moreover, GRK5(-/-) embryonic fibroblasts and preadipocytes exhibited 40-70% decreased expression of adipogenic genes and impaired adipocyte differentiation when induced in vitro. Taken together, these results suggest that GRK5 is an important regulator of adipogenesis and is crucial for the development of diet-induced obesity.  相似文献   

6.
Objective: To determine whether the major ovarian factor estrogen modulates peroxisome proliferator‐activated receptor (PPAR) α actions on obesity and to investigate the mechanism by which estrogen regulates PPARα actions. Research Methods and Procedures: Female ovariectomized mice were randomly divided into four groups (n = 8/group). After they were treated with combinations of high fat, fenofibrate (FF), or 17β‐estradiol (E) for 13 weeks, variables and determinants of obesity and lipid metabolism were measured using in vivo and in vitro approaches. Results: When female ovariectomized mice were given a high‐fat diet with either FF or E, body weight gain and white adipose tissue mass were significantly reduced and serum lipid profiles were improved compared with control mice fed a high‐fat diet alone. When mice were concomitantly treated with FF and E, however, E reversed the effects of FF on body weight gain, serum lipid profiles, and hepatic PPARα target gene expression. Consistent with the in vivo data, E not only decreased basal levels of PPARα reporter gene activation but also significantly decreased Wy14,643‐induced luciferase reporter activity. In addition, inhibition of PPARα functions by E did not seem to occur by interfering with the DNA binding of PPARα. Discussion: Our results demonstrate that in vivo and in vitro treatment of estrogen inhibited the actions of FF‐activated PPARα on obesity and lipid metabolism through changes in the expression of PPARα target genes, providing evidence that FF does not regulate obesity in female mice with functioning ovaries.  相似文献   

7.
Fenofibrate, a selective 1PPAR-α activator, is prescribed to treat human dyslipidemia. The aim of this study was to delineate the mechanism of fenofibrate-mediated reductions in adiposity, improvements in insulin sensitivity, and lowering of triglycerides (TG) and free fatty acids (FFA) and to investigate if these favorable changes are related to the inhibition of lipid deposition in the aorta. To test this hypothesis we used male LDLr deficient mice that exhibit the clinical features of metabolic syndrome X when fed a high fat high cholesterol (HF) diet. LDLr deficient mice fed HF diet and simultaneously treated with fenofibrate (100 mg/kg body weight) prevented development of obesity, lowered serum triglycerides and cholesterol, improved insulin sensitivity, and prevented accumulation of lipids in the aorta. Lowering of circulating lipids occurred via down-regulation of lipogenic genes, including fatty acid synthase, acetyl CoA carboxylase and diacyl glycerol acyl transferase-2, concomitant with decreased liver TG and cholesterol, and TG output rate. Fenofibrate also suppressed liver apoCIII mRNA levels and markedly increased lipoprotein lipase mRNA levels, known to enhance serum TG catabolism. In addition, fenofibrate profoundly reduced epididymal fat and mesenteric fat mass to the levels seen in lean mice. The reductions in body weight were associated with elevation of hepatic uncoupling protein 2 (UCP2) mRNA, a concomitant increase in the ketone body formation, and improved insulin sensitivity associated with tumor necrosis factor-α reductions and phosphoenol pyruvate carboxykinase down-regulation. These results demonstrate that fenofibrate improves lipid abnormalities partly via inhibition of TG production and partly via clearance of TG-rich apoB particles by elevating LPL and reduced apoCIII. The prevention of obesity development occurred via energy expenditure. Fenofibrate-mediated hypolipidemic effects together with improved insulin sensitivity and loss of adiposity led to the reductions in the aortic lipid deposition by inhibiting early stages of atherosclerosis possibly via vascular cell adhesion molecule-1 (VCAM-1) modulation. These results suggest that potent PPAR-α activators may be useful in the treatment of syndrome X. (Mol Cell Biochem xxx: 1–16, 2005)  相似文献   

8.
It has been reported that apelin functions as an adipokine, which has been associated to obesity and insulin resistance. The objective of this study was to analyze the apelin mRNA expression in white adipose tissue (WAT) from high-fat (Cafeteria) fed rats, in order to examine potential relationships with obesity markers and other related risk factors. Animals fed on the high-fat diet during 56 days increased their body weight, total body fat and WAT depots weights when compared to controls. Apelin subcutaneous mRNA expression was higher in the Cafeteria than in the Control fed group and this increase was partially reversed by dietary vitamin C supplementation. Statistically significant associations between subcutaneous apelin gene expression and almost all the studied variables were identified, being of special interest the correlations found with serum leptin (r = 0.517), liver malondialdehyde (MDA) levels (r = 0.477), and leptin, IRS-3 and IL-1ra retroperitoneal mRNA expression (r = 0.701; r = 0.692 and r = 0.561, respectively). These associations evidence a possible role for apelin in the excessive weight gain induced by high-fat feeding and increased adiposity, insulin-resistance, liver oxidative stress and inflammation.  相似文献   

9.
Resistance to high-fat diet-induced obesity (DIR) has been observed in mice fed a high-fat diet and may provide a potential approach for anti-obesity drug discovery. However, the metabolic status, gut microbiota composition, and its associations with DIR are still unclear. Here, ultraperformance liquid chromatography-tandem mass spectrometry-based urinary metabolomic and 16S rRNA gene sequencing-based fecal microbiome analyses were conducted to investigate the relationship between metabolic profile, gut microbiota composition, and body weight of C57BL/6J mice on chow or a high-fat diet for 8 weeks. PICRUSt analysis of 16S rRNA gene sequences predicted the functional metagenomes of gut bacteria. The results demonstrated that feeding a high-fat diet increased body weight and fasting blood glucose of high-fat diet-induced obesity (DIO) mice and altered the host-microbial co-metabolism and gut microbiota composition. In DIR mice, high-fat diet did not increase body weight while fasting blood glucose was increased significantly compared to chow fed mice. In DIR mice, the urinary metabolic pattern was shifted to a distinct direction compared to DIO mice, which was mainly contributed by xanthine. Moreover, high-fat diet caused gut microbiota dysbiosis in both DIO and DIR mice, but in DIR mice, the abundance of Bifidobacteriaceae, Roseburia, and Escherichia was not affected compared to mice fed a chow diet, which played an important role in the pathway coverage of FormylTHF biosynthesis I. Meanwhile, xanthine and pathway coverage of FormylTHF biosynthesis I showed significant positive correlations with mouse body weight. These findings suggest that gut microbiota-mediated xanthine metabolism correlates with resistance to high-fat DIO.  相似文献   

10.
Melanin-concentrating hormone (MCH) is a cyclic orexigenic peptide expressed in the lateral hypothalamus. Recently, we demonstrated that chronic intracerebroventricular infusion of MCH induced obesity accompanied by sustained hyperphagia in mice. Here, we analyzed the mechanism of MCH-induced obesity by comparing animals fed ad libitum with pair-fed and control animals. Chronic infusion of MCH significantly increased food intake, body weight, white adipose tissue (WAT) mass, and liver mass in ad libitum-fed mice on a moderately high-fat diet. In addition, a significant increase in lipogenic activity was observed in the WAT of the ad libitum-fed group. Although body weight gain was marginal in the pair-fed group, MCH infusion clearly enhanced the lipogenic activity in liver and WAT. Plasma leptin levels were also increased in the pair-fed group. Furthermore, MCH infusion significantly reduced rectal temperatures in the pair-fed group. In support of these findings, mRNA expression of uncoupling protein-1, acyl-CoA oxidase, and carnitine palmitoyltransferase I, which are key molecules involved in thermogenesis and fatty acid oxidation, were reduced in the brown adipose tissue (BAT) of the pair-fed group, suggesting that MCH infusion might reduce BAT functions. We conclude that the activation of MCH neuronal pathways stimulated adiposity, in part resulting from increased lipogenesis in liver and WAT and reduced energy expenditure in BAT. These findings confirm that modulation of energy homeostasis by MCH may play a critical role in the development of obesity.  相似文献   

11.
12.
We have previously shown that medium-chain triglyceride (MCT) resulted in significantly less body fat mass than long-chain triglyceride (LCT) did in hypertriglyceridimic subjects. The possible mechanism for this was investigated by measuring and analyzing changes in the body fat, blood lipid profile, enzymatic level and activity of hormone-sensitive lipase (HSL) and its mRNA expression, and levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in white adipose tissue (WAT) of C57BL/6J mice fed for 16 weeks on an MCT or LCT diet. MCT induced lower body weight and body fat, and an improved blood lipid profile than LCT did. The enzymatic level and activity of HSL and its mRNA expression, and the levels of cAMP and PKA were significantly higher in WAT of mice fed with the MCT diet. No significant differences in the levels of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in WAT were apparent between the effects of MCT and LCT. It is concluded that lipolysis by the increased level and activity of HSL, which was induced by the activation of cAMP-dependent PKA in WAT, was partially responsible for the lower fat accumulation in C57BL/6J mice fed with MCT.  相似文献   

13.
Lipid metabolism in a child may be altered when the mother has a high-fat diet (HFD), but it is unclear whether the lipid metabolism of future offspring (grandchildren) is also changed under these circumstances. In this study, we examined the influence of intake of an HFD beyond one generation on offspring in normal mice. Parent mice fed an HFD were bred and the resultant second and third generations were also fed an HFD. The diets used in the study had approximately 20% more energy than a standard chow diet. Changes in lipid metabolism were examined in each generation. Intake of an HFD from generation to generation promoted lipid accumulation in the white adipose tissue of female mice, increased lipid, glucose and insulin levels in the serum, increased the activities of enzymes associated with fatty acid metabolism in the liver, promoted lipid accumulation in hepatocytes and adipocytes and increased the mRNA levels of Cdkn1a in the liver and white adipose tissue. These results suggest that activation of Cdkn1a promoted lipid accumulation in the liver and white adipose tissue of third-generation female mice that were offspring from earlier generations fed HFDs. Moreover, intake of a high-energy diet beyond one generation led to offspring with obesity, fatty liver and hyperinsulinemia.  相似文献   

14.
Nobiletin (NOB) is a polymethoxylated flavone present in citrus fruits and has been reported to have antitumor and anti-inflammatory effects. However, little is known about the effects of NOB on obesity and insulin resistance. In this study, we examined the effects of NOB on obesity and insulin resistance, and the underlying mechanisms, in high-fat diet (HFD)-induced obese mice. Obese mice were fed a HFD for 8 weeks and then treated without (HFD control group) or with NOB at 10 or 100 mg/kg. NOB decreased body weight gain, white adipose tissue (WAT) weight and plasma triglyceride. Plasma glucose levels tended to decrease compared with the HFD group and improved plasma adiponectin levels and glucose tolerance. Furthermore, NOB altered the expression levels of several lipid metabolism-related and adipokine genes. NOB increased the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, PPAR-α, carnitine palmitoyltransferase-1, uncoupling protein-2 and adiponectin, and decreased the mRNA expression of tumor necrosis factor-α and monocyte chemoattractant protein-1 in WAT. NOB also up-regulated glucose transporter-4 protein expression and Akt phosphorylation and suppressed IκBα degradation in WAT. Taken together, these results suggest that NOB improves adiposity, dyslipidemia, hyperglycemia and insulin resistance. These effects may be elicited by regulating the expression of lipid metabolism-related and adipokine genes, and by regulating the expression of inflammatory makers and activity of the insulin signaling pathway.  相似文献   

15.
The age decline in DHEA levels has been associated with the appearance of age-related disorders such as obesity and insulin resistance. The aim of this study was to analyse the effect of chronic administration (13 weeks) of DHEA (5 g/kg diet) to old female rats fed on a high-fat diet on body weight and adiposity, and concretely on the expression of the adipokines related to obesity and insulin resistance, such as leptin, adiponectin and resistin. DHEA treatment induced a decrease in body weight, adipose tissue mass and serum insulin, adiponectin and leptin levels. Adiponectin mRNA expression in visceral fat depots decreased with aging, but this reduction was attenuated by DHEA treatment. DHEA treatment also stimulated resistin gene expression in the ovaric and renal adipose depots, which is associated with an increase in its circulating levels. In conclusion, DHEA treatment decreases body weight and adiposity in old female rats fed a high-fat diet, leading to an improvement of the HOMA index for insulin sensitivity, with decreasing circulating insulin levels, and preventing the age-associated decline of visceral-adipose adiponectin expression.  相似文献   

16.
Lycopene (LYC), one of the major carotenoids in tomatoes, has been preclinically and clinically used to obesity and type 2 diabetes management. However, whether its ability of countering body weight gain is related to induction of brown-like adipocyte phenotype in white adipose tissues (WAT) remains largely unknown. Activation of peroxisome proliferator-activated receptor γ (PPARγ) serves the brown-like phenotype conversion and energy expenditure. Here, we show that LYC treatment promotes glucose consumption and improves insulin sensitivity, as well as fosters white adipocytes browning through up-regulating mRNA and protein expression levels of PPARγ, uncoupling protein 1, PPARγ coactivator-1α and PR domain-containing 16 in the differentiated 3T3-L1 adipocytes and primary adipocytes, as well as in the WAT of HFD-exposed obese mice. In addition, LYC treatment attenuates body weight gain and improves serum lipid profiles as well as promotes brown adipose tissue activation in obese mice. Moreover, PPARγ is induced with LYC intervention in mitochondria respiration and browning in white adipocytes and tissues. Taken together, these results suggest that LYC counteracts obesity and improves glucose and lipid metabolism through induction of the browning via up-regulation of PPARγ, which offers a new perspective of this compound to combat obesity and obesity-related disorders.  相似文献   

17.
摘要 目的:探讨乙酰辅酶A羧化酶抑制剂(MK-4074)联合非诺贝特对小鼠非酒精性脂肪肝(NAFLD)的脂质含量以及肝功能的改善效果。方法:20只C57BL/6小鼠给予60%高脂饲料连续喂养8周构建NAFLD小鼠模型后,随机分为安慰剂组、MK-4074组、非诺贝特组以及MK-4074联合非诺贝特治疗组,每组各5只,继续高脂喂养并分别给予安慰剂(Placebo)、MK-4074(10 mg/kg/天)、非诺贝特(30 mg/kg/天)、以及MK-4074(10 mg/kg/天)+ 非诺贝特(30 mg/kg/天)治疗持续8周。治疗结束后对小鼠体重、肝指数、肝脏脂质含量、肝功能以及肝脏病理和肝脏中性粒细胞和巨噬细胞浸润情况进行分析。结果:与安慰剂组相比,单用MK-4074治疗可显著降低肝指数、肝脏甘油三酯(TG)、胆固醇(TC)、非酯化脂肪酸(NEFA)的含量以及血清ALT和AST水平,而对小鼠体重和血清TC没有显著影响;单用非诺贝特可显著降低小鼠体重,肝脏TG、TC、NEFA以及血清TG、 ALT和AST水平,对小鼠的肝指数、血清TC没有显著影响;而MK-4074与非诺贝特联合治疗可显著降低小鼠体重、肝脏TG、TC、NEFA,以及血清TG、ALT和AST水平,降低肝脏脂质积累以及中性粒细胞与巨噬细胞浸润,效果优于MK-4074或非诺贝特单药治疗。结论:MK-4074联合非诺贝特可显著减少NAFLD小鼠肝脏的脂质含量,改善肝功能。  相似文献   

18.

Introduction

Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice.

Methods

The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay.

Results

In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes.

Conclusion

Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.  相似文献   

19.
The present study investigated the effects of combined fucoxanthin (Fc) and conjugated linoleic acid (CLA) on high-fat diet-induced obese rats. Thirty five rats were divided into four groups, fed a high-fat diet (Control, 15% fat, wt/wt), supplemented with low Fc (FCL, 0.083 mg/kg/bw), high Fc (FCH, 0.167 mg/kg/bw) and FCL (0.083 mg/kg/bw) plus CLA (0.15 g/kg/bw) (FCL+CLA) for 52 d. Body weight and white adipose tissue (WAT) weight were significantly suppressed in FCL+CLA group than those in control group. WAT weight was also markedly attenuated in FCL and FCH groups. Accumulation of hepatic lipid droplets and the perirenal adipocyte size of FCL, FCH and FCL+CLA groups were diminished compared to control group. Serum total cholesterol level in FCH group, triacylglycerol and leptin levels in FCL, FCH and FCL+CLA groups, and glucose concentration in FCH and FCL+CLA groups were significantly decreased than those in control group. The mRNA expression of adiponectin, adipose triacylglycerol lipase, carnitine palmitoyltransferase 1A was remarkably up-regulated in FCL, FCH and FCL+CLA groups. These results suggest that Fc and FCL+CLA could reduce serum levels of triacylglycerol, glucose and leptin, and FCL+CLA could exert anti-obesity effects by regulating mRNA expression of enzymes related to lipid metabolism in WAT of diet-induced obesity rats.  相似文献   

20.
We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets — LSO, FO2.5, FO12.5 or FO25 — containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号