首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nematode Caenorhabditis elegans has an unusual small nuclear RNA, containing a 100-nucleotide RNA molecule, spliced leader RNA, which donates its 5' 22 nucleotides to a variety of recipient RNAs by a trans-splicing reaction. The spliced leader RNA has a 5' trimethylguanosine (TMG) cap, which becomes the 5' end of trans-spliced mRNAs. We found that mature trans-spliced mRNAs were immunoprecipitable with anti-TMG cap antibodies and that TMG-containing dinucleotides specifically competed with the trans-spliced mRNAs for antibody binding. We also found that these mRNAs retained their TMG caps throughout development and that the TMG-capped mRNAs were polysome associated. Since the large majority of C. elegans mRNAs are not trans-spliced, the addition of the spliced leader and its TMG cap to a limited group of recipient RNAs may create a functionally distinct subset of mRNAs.  相似文献   

2.
3.
In trypanosomatid protozoa the biogenesis of mature mRNA involves addition of the spliced leader (SL) sequence from the SL RNA to polycistronic pre-mRNA via trans-splicing. Here we present a mutational analysis of the trypanosomatid Leptomonas collosoma SL RNA to further our understanding of its functional domains important for trans-splicing utilization. Mutant SL RNAs were analyzed for defects in modification of the hypermethylated cap structure (cap 4) characteristic of trypanosomatid SL RNAs, for defects in the first step of the reaction and overall utilization in trans-splicing. Single substitution of the cap 4 nucleotides led to undermethylation of the cap 4 structure, and these mutants were all impaired in their utilization in trans-splicing. Abrogation of the sequence of the Sm-like site and sequences downstream to it also showed cap modification and trans-splicing defects, thus providing further support for a functional linkage between cap modifications and trans-splicing. Further, we report that in L. collosoma both the exon and intron of the SL RNA contribute information for efficient function of the SL RNA in trans-splicing. This study, however, did not provide support for the putative SL RNA-U6 small nuclear RNA (snRNA) interaction at the Sm site like in the nematodes, suggesting differences in the bridging role of U6 in the two trans-splicing systems.  相似文献   

4.
A 39-nucleotide leader is trans-spliced onto all trypanosome nuclear mRNAs. The precursor spliced leader RNA was tested for trans-splicing function in vivo by mutating the intron. We report that in Leishmania tarentolae spliced leader RNA 5' modification is influenced by the primary sequence of stem-loop II, the Sm-binding site, and the secondary structure of stem-loop III. The sequence of stem-loop II was found to be important for cap 4 formation and splicing. As in Ascaris, mutagenesis of the bulge nucleotide in stem-loop II was detrimental to trans-splicing. Because restoration of the L. tarentolae stem-loop II structure was not sufficient to restore splicing, this result contrasts the findings in the kinetoplastid Leptomonas, where mutations that restored stem-loop II structure supported splicing. Methylation of the cap 4 structure and splicing was also dependent on both the Sm-binding site and the structure of stem-loop III and was inhibited by incomplete 3' end processing. The critical nature of the L. tarentolae Sm-binding site is consistent with its essential role in the Ascaris spliced leader RNA, whereas in Leptomonas mutation of the Sm-binding site and deletion of stem-loop III did not affect trans-splicing. A pathway for Leishmania spliced leader RNA processing and maturation is proposed.  相似文献   

5.
6.
In trypanosomatid protozoa, all mRNAs obtain identical 5'-ends by trans-splicing of the 5'-terminal 39 nucleotides of a small spliced leader RNA to appropriate acceptor sites in pre-mRNA. Although this process involves spliceosomal small nuclear (sn) RNAs, it is thought that trypanosomatids do not contain a homolog of the cis-spliceosomal U1 snRNA. We show here that a trypanosomatid protozoon, Crithidia fasciculata, contains a novel small RNA that displays several features characteristic of a U1 snRNA, including (i) a methylguanosine cap and additional 5'-terminal modifications, (ii) a potential binding site for common core proteins that are present in other trans-spliceosomal ribonucleoproteins, (iii) a U1-like 5'-terminal sequence, and (iv) a U1-like stem/loop I structure. Because trypanosomatid pre-mRNAs do not appear to contain cis-spliced introns, we argue that this previously unrecognized RNA species is a good candidate to be a trans-spliceosomal U1 snRNA.  相似文献   

7.
8.
In nematodes, a fraction of mRNAs acquires a common 22-nucleotide 5'-terminal spliced leader sequence via a trans-splicing reaction. The same premessenger RNAs which receive the spliced leader are also processed by conventional cis-splicing. Whole cell extracts prepared from synchronous embryos of the parasitic nematode Ascaris lumbricoides catalyze both cis- and trans-splicing. We have used this cell-free system and oligodeoxynucleotide directed RNase H digestion to assess the U small nuclear RNA requirements for nematode cis- and trans-splicing. These experiments indicated that both cis- and trans-splicing require intact U2 and U4/U6 small nuclear ribonucleoproteins (snRNPs). However, whereas cis-splicing displays the expected requirement for an intact U1 snRNP, trans-splicing is unaffected when approximately 90% of U1 snRNP is degraded. These results suggest that 5' splice site identification differs in nematode cis- and trans-splicing.  相似文献   

9.
One of the unique aspects of RNA processing in trypanosomatid protozoa is the presence of a cap 4 structure (m7Gpppm2(6)AmpAmpCmpm3Um) at the 5' end of all mRNAs. The cap 4 becomes part of the mRNA through trans-splicing of a 39-nucleotide-long sequence donated by the spliced leader RNA. Although the cap 4 modifications are required for trans-splicing to occur, the underlying mechanism remains to be determined. We now describe an unconventional nuclear cap binding complex (CBC) in Trypanosoma brucei with an apparent molecular mass of 300 kDa and consisting of five protein components: the known CBC subunits CBP20 and importin-alpha and three novel proteins that are only present in organisms featuring a cap 4 structure and trans-splicing. Competitive binding studies are consistent with a specific interaction between the CBC and the cap 4 structure. Downregulation of several individual components of the T. brucei CBC by RNA interference demonstrated an essential function at an early step in trans-splicing. Thus, our studies are consistent with the CBC providing a mechanistic link between cap 4 modifications and trans-splicing.  相似文献   

10.
11.
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.  相似文献   

12.
A spliced leader contributes the mature 5'ends of many mRNAs in trans-splicing organisms. Trans-spliced metazoan mRNAs acquire an m3(2,2,7)GpppN cap from the added spliced leader exon. The presence of these caps, along with the typical m7GpppN cap on non-trans-spliced mRNAs, requires that cellular mRNA cap-binding proteins and mRNA metabolism deal with different cap structures. We have developed and used an in vitro system to examine mRNA degradation and decapping activities in nematode embryo extracts. The predominant pathway of mRNA decay is a 3' to 5' pathway with exoribonuclease degradation of the RNA followed by hydrolysis of resulting mRNA cap by a scavenger (DcpS-like) decapping activity. Direct decapping of mRNA by a Dcp1/Dcp2-like activity does occur, but is approximately 15-fold less active than the 3' to 5' pathway. The DcpS-like activity in nematode embryo extracts hydrolyzes both m7GpppG and m3(2,2,7)GpppG dinucleoside triphosphates. The Dcp1/Dcp2-like activity in extracts also hydrolyzes these two cap structures at the 5' ends of RNAs. Interestingly, recombinant nematode DcpS differs from its human ortholog in its substrate length requirement and in its capacity to hydrolyze m3(2,2,7)GpppG.  相似文献   

13.
By virtue of its preferential binding to poly(U) tails on small RNA precursors and nuclear localisation motif, the La protein has been implicated for a role in the stabilisation and nuclear retention of processing intermediates for a variety of small RNAs in eukaryotic cells. As the universal substrate for trans-splicing, the spliced leader RNA is transcribed as a precursor with just such a tail. La protein was targeted for selective knockdown by inducible RNA interference in Trypanosoma brucei. Of three RNA interference strategies employed, a p2T7-177 vector was the most effective in reducing both the La mRNA as well as the protein itself from induced cells. In the relative absence of La protein T. brucei cells were not viable, in contrast to La gene knockouts in yeast. A variety of potential small RNA substrates were examined under induction, including spliced leader RNA, spliced leader associated RNA, the U1, U2, U4, and U6 small nuclear RNAs, 5S ribosomal RNA, U3 small nucleolar RNA, and tRNATyr. None of these molecules showed significant variance in size or abundance in their mature forms, although a discrete subset of intermediates appear for spliced leader RNA and tRNATyr intron splicing under La depletion conditions. 5'-end methylation in the spliced leader RNA and U1 small nuclear RNA was unaffected. The immediate cause of lethality in T. brucei was not apparent, but may represent a cumulative effect of multiple defects including processing of spliced leader RNA, tRNATyr and other unidentified RNA substrates. This study indicates that La protein binding is not essential for maturation of the spliced leader RNA, but does not rule out the presence of an alternative processing pathway that could compensate for the absence of normally-associated La protein.  相似文献   

14.
15.
Hydrolysis of the mRNA cap plays a pivotal role in initiating and completing mRNA turnover. In nematodes, mRNA metabolism and cap-interacting proteins must deal with two populations of mRNAs, spliced leader trans-spliced mRNAs with a trimethylguanosine cap and non-trans-spliced mRNAs with a monomethylguanosine cap. We describe here the characterization of nematode Dcp1 and Dcp2 proteins. Dcp1 was inactive in vitro on both free cap and capped RNA and did not significantly enhance Dcp2 activity. Nematode Dcp2 is an RNA-decapping protein that does not bind cap and is not inhibited by cap analogs but is effectively inhibited by competing RNA irrespective of RNA sequence and cap. Nematode Dcp2 activity is influenced by both 5' end sequence and its context. The trans-spliced leader sequence on mRNAs reduces Dcp2 activity approximately 10-fold, suggesting that 5'-to-3' turnover of trans-spliced RNAs may be regulated. Nematode Dcp2 decaps both m(7)GpppG- and m(2,2,7)GpppG-capped RNAs. Surprisingly, both budding yeast and human Dcp2 are also active on m(2,2,7)GpppG-capped RNAs. Overall, the data suggest that Dcp2 activity can be influenced by both sequence and context and that Dcp2 may contribute to gene regulation in multiple RNA pathways, including monomethyl- and trimethylguanosine-capped RNAs.  相似文献   

16.
17.
18.
Most pseudouridinylation in eukaryotic rRNA and small nuclear RNAs is guided by H/ACA small nucleolar RNAs. In this study, the Trypanosoma brucei pseudouridine synthase, Cbf5p, a snoRNP protein, was identified and silenced by RNAi. Depletion of this protein destabilized all small nucleolar RNAs of the H/ACA-like family. Following silencing, defects in rRNA processing, such as accumulation of precursors and inhibition of cleavages to generate the mature rRNA, were observed. snR30, an H/ACA RNA involved in rRNA maturation, was identified based on prototypical conserved domains characteristic of this RNA in other eukaryotes. The silencing of CBF5 also eliminated the spliced leader-associated (SLA1) RNA that directs pseudouridylation on the spliced leader RNA (SL RNA), which is the substrate for the trans-splicing reaction. Surprisingly, the depletion of Cbf5p not only eliminated the pseudouridine on the SL RNA but also abolished capping at the fourth cap-4 nucleotide. As a result of defects in the SL RNA and decreased modification on the U small nuclear RNA, trans-splicing was inhibited at the first step of the reaction, providing evidence for the essential role of H/ACA RNAs and the modifications they guide on trans-splicing.  相似文献   

19.
Very closely related short sequences are present at the 5' end of cytoplasmic mRNAs in Euglena as evidenced by comparison of cDNA sequences and hybrid-arrested translation experiments. By cloning Euglena gracilis nuclear DNA and isolating the rbcS gene (encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase), we have shown that the short leader sequence does not flank the nuclear gene sequence. The leader sequences were found to constitute the 5' extremities of a family of small RNAs. Sequencing six members of this family revealed a striking similarity to vertebrate U snRNAs. We propose that a trans-splicing mechanism transfers the spliced leader (SL) sequence from these small RNAs (SL RNAs) to pre-mature mRNAs. Transfer of leader sequences to mRNAs by trans-splicing has been shown only in trypanosomes where cis-splicing is unknown, and in nematodes where not more than 10% of the mRNAs have leader sequences. Our results strongly suggest that Euglena is a unique organism in which both a widespread trans-splicing and a cis-splicing mechanism co-exist.  相似文献   

20.
Every mRNA in trypanosomes consists of two exons, a common 5' capped mini-exon or spliced leader and a coding-exon. All evidence suggests that the exons are joined by trans-splicing of two individual precursor RNAs, the mini-exon donor RNA or spliced leader precursor RNA (medRNA) and the pre-mRNA. We studied intermediates of the splicing reaction using denaturing two-dimensional PAGE and structurally identified a group of small (approximately 180-300 nt) non-polyadenylated, Y-shaped branched RNAs. The branched Y-shaped RNAs contain the 105 nt medRNA derived intron, joined in a 2'-5' phosphodiester bond to small heterogeneously sized RNAs. These non-polyadenylated branched Y-shaped RNA molecules are analogous to the lariat shaped introns of higher eukaryotes and presumably represent the released intron-like by-products of a trans-splicing reaction which joins the mini-exon and the major coding-exon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号