首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.  Three cyclic diterpenoids isolated from gorgonians of theEunicea genus and characterized as eupalmerin acetate (EUAC), 12,13-bisepieupalmerin (BEEP), and eunicin (EUNI) were found to be pharmacologically active on the nicotinic acetylcholine receptor (AChR).
2.  The receptor from the BC3H-1 muscle cell line was expressed inXenopus laevis oocytes and studied with a two-electrode voltage clamp apparatus.
3.  All three compounds reversibly inhibited ACh-induced currents, with IC50's from 6 to 35µM. ACh dose-response curves suggested that his inhibition was noncompetitive. The cembranoids also increased the rate of receptor desensitization.
4.  Radioligand-binding studies using AChR-rich membranes fromTorpedo electric organ indicated that all three cembranoids inhibited high-affinity [3H]phencyclidine binding, with IC50's of 0.8, 11.6, and 63.8µM for EUNI, EUAC, and BEEP, respectively. The cembranoids at a 100µM concentration did not inhibit [-125I]bungarotoxin binding to either membrane-bound or solubilized AChR.
5.  It is concluded that these compounds act as noncompetitive inhibitors of peripheral AChR.
  相似文献   

2.
Models of closed and open channel pores of a muscle-type nicotinic acetylcholine receptor (nAChR) channel comprising M1 and M2 segments are presented. A model of the closed channel is proposed in which hydrophobic residues of the Equatorial Leucine ring screen the oxygen domain formed by the Serine ring, thereby preventing ion flux without completely occluding the pore. This model demonstrates a high similarity with the structure derived from a recent electron microscopy study. We propose that hydrophobic residues of the Equatorial Leucine ring are retracted when the pore is open. Our models provide a possible resolution of the nAChR gate controversy. We have also obtained explanations for the complex mechanisms underlying inhibition of nAChR by philanthotoxins (PhTXs). PhTX-343, containing a spermine moiety with a charge of +3, binds deep in the pore near the Serine ring where classical open channel blockers of nAChR bind. In contrast, PhTX-(12), which has a single charged amino group is unable to reach deeply located rings because of steric restrictions. Both philanthotoxins may bind to a hydrophobic site located close to the external entrance of the pore in a region that includes residues associated with the regulation of desensitization.  相似文献   

3.
G Akk  A Auerbach 《Biophysical journal》1996,70(6):2652-2658
The properties of adult mouse recombinant nicotinic acetylcholine receptors activated by acetylcholine (ACh+) or tetramethylammonium (TMA+) were examined at the single-channel level. The midpoint of the dose-response curve depended on the type of monovalent cation present in the extracellular solution. The shifts in the midpoint were apparent with both inward and outward currents, suggesting that the salient interaction is with the extracellular domain of the receptor. Kinetic modeling was used to estimate the rate constants for agonist binding and channel gating in both wild-type and mutant receptors exposed to Na+, K+, or Cs+. The results indicate that in adult receptors, the two binding sites have the same equilibrium dissociation constant for agonists. The agonist association rate constant was influenced by the ionic composition of the extracellular solution whereas the rate constants for agonist dissociation, channel opening, and channel closing were not. In low-ionic-strength solutions the apparent association rate constant increased in a manner that suggests that inorganic cations are competitive inhibitors of ACh+ binding. There was no evidence of an electrostatic potential at the transmitter binding site. The equilibrium dissociation constants for inorganic ions (Na+, 151 mM; K+, 92 mM; Cs+, 38 mM) and agonists (TMA+, 0.5 mM) indicate that the transmitter binding site is hydrophobic. Under physiological conditions, about half of the binding sites in resting receptors are occupied by Na+.  相似文献   

4.
[3H]Meproadifen mustard, an affinity label for the noncompetitive antagonist site of the nicotinic acetylcholine receptor (AChR), specifically alkylates the AChR alpha-subunit when the acetylcholine-binding sites are occupied by agonist (Dreyer, E. B., Hasan, F., Cohen, S. G., and Cohen, J. B. (1986) J. Biol. Chem. 261, 13727-13734). In this report, we identify the site of alkylation within the alpha-subunit as Glu-262. AChR-rich membranes from Torpedo californica electric organ were reacted with [3H]meproadifen mustard in the presence of carbamylcholine and in the absence or presence of nonradioactive meproadifen to define specific alkylation of the noncompetitive antagonist site. Alkylated alpha-subunits were isolated and subjected to chemical or enzymatic cleavage. When digests with CNBr in 70% trifluoroacetic acid or 70% formic acid were fractionated by gel filtration high performance liquid chromatography (HPLC), specifically labeled material was recovered in the void volume fractions. Based upon NH2-terminal sequence analysis, for both digests, the void volume fractions contained a fragment beginning at Gln-208 before the M1 hydrophobic sequence, whereas the sample from the digest in trifluoroacetic acid also contained as a primary sequence a fragment beginning at Thr-244 and extending through the M2 hydrophobic sequence. Sequence analysis revealed no release of 3H for the sample from digestion in formic acid, whereas for the trifluoroacetic acid digest, there was specific release of 3H in cycle 19, which would correspond to Glu-262. This site of alkylation was confirmed by isolation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase HPLC of a specifically labeled fragment from an endoproteinase Lys-C digest of the alkylated alpha-subunit. NH2-terminal amino acid sequencing revealed release of 3H at cycle 20 from a fragment beginning at Met-243 and extending into the M3 hydrophobic sequence. Because [3H]meproadifen mustard contains, as its reactive group, a positively charged quaternary aziridinium ion, Glu-262 of the alpha-subunit is identified as a contributor to the cation-binding domain of the noncompetitive antagonist-binding site and thus of the ion channel.  相似文献   

5.
The nicotinic acetylcholine receptor possesses an agonist binding site on each of the two alpha-subunits and an allosterically coupled noncompetitive inhibitor (NCI) site. The spatial relationships between these sites have been determined by fluorescence energy transfer employing lifetime and steady-state techniques with two donor-acceptor pairs. 6-(5-Dimethylaminonaphthalene-1-sulfonamido)hexanoic acid-beta-(N-trimethylammonium)ethyl ester (dansyl-C6-choline, an agonist) and bis(choline)-N-(4-nitrobenzo-2-oxa-1,3-diazol-7-yl)-iminodiprop rionate (BCNI, a competitive antagonist) were employed as energy donors bound to the agonist sites. Ethidium was employed as a specific probe of the NCI site and served as the energy acceptor for both donors. Under steady-state conditions, energy transfer was measured by monitoring BCNI fluorescence as a function of occupancy of ethidium. Changes in acceptor occupancy were achieved by titrating acetylcholine receptor-donor-acceptor complexes with phencyclidine, a nonfluorescent NCI ligand. Extrapolation of the data to 100% acceptor occupancy yielded a transfer efficiency of 38% for the BCNI-ethidium pair. In the second method, the transfer efficiency of the dansyl-C6-choline-ethidium pair was determined by analysis of the reduction of the donor-excited state fluorescence lifetime. The nanosecond decay rates for dansyl-C6-choline measured in the presence of phencyclidine are characterized by two lifetimes (tau 1 = 6.7; tau 2 = 17.1 ns) with an amplitude ratio, alpha 1/alpha 2 = 2.3. In the presence of ethidium, the two lifetimes were proportionally diminished while retaining a comparable ratio of amplitudes. Displacement of ethidium from the NCI site by phencyclidine restored the two lifetimes to their original values. These data indicate that the donors bound to the two agonist sites transferred energy with similar efficiencies to the acceptor. Thus, the lifetime data suggest that the NCI site is approximately equidistant from each of the agonist sites. The corrected efficiency of donor quenching by this method was 34%, a value in close accord with the steady-state measurements. The distance between the agonist sites and the NCI site was calculated to be between 21-35 A for the BCNI/ethidium pair and 22-40 A for the dansyl-C6-choline/ethidium pair. Consideration of these distances with respect to the molecular dimensions of the receptor and location of the agonist sites suggests a location for the NCI site near the ion channel at the extracellular surface of the membrane bilayer.  相似文献   

6.
7.
Previous studies have established the presence of overlapping binding sites for the noncompetitive antagonists (NCAs) amobarbital, tetracaine, and 3-trifluoromethyl-3-(m-[(125)I]iodophenyl) diazirine ([(125)I]TID) within the ion channel of the Torpedo nicotinic acetylcholine receptor (AChR) in the resting state. These well-characterized NCAs and competitive radioligand binding and photolabeling experiments were employed to better characterize the interaction of the dissociative anesthetics ketamine and thienylcycloexylpiperidine (TCP) with the resting AChR. Our experiments yielded what appear to be conflicting results: (i) both ketamine and TCP potentiated [(125)I]TID photoincorporation into AChR subunits; and (ii) ketamine and TCP had very little effect on [(14)C]amobarbital binding. Nevertheless, (iii) both ketamine and TCP completely displaced [(3)H]tetracaine binding (K(i)s approximately 20.9 and 2.0 microM, respectively) by a mutually exclusive mechanism. To reconcile these results we propose that, in the resting ion channel, TCP and ketamine bind to a site that is spatially distinct from the TID and barbiturate locus, while tetracaine bridges both binding sites.  相似文献   

8.
The spectroscopic properties and specificity of binding of a fluorescent quaternary amine, ethidium, with acetylcholine receptor-enriched membranes from Torpedo californica have been examined. Competition binding with [3H]phencyclidine in the presence of carbamylcholine showed that ethidium binds with high affinity to a noncompetitive inhibitor site (KD = 3.6 X 10(-7) M). However, in the presence of alpha-toxin, ethidium's affinity is substantially lower (KD approximately 1 X 10(-3) M). Ethidium was also found to enhance [3H]acetylcholine binding with a KD characteristic of ethidium binding to a high-affinity noncompetitive inhibitor site. These findings indicate that ethidium binds to an allosteric site which is regulated by agonist binding and can convert the agonist sites from low to high affinity. Fluorescence titrations of ethidium in the presence of carbamylcholine yielded a similar KD (2.5 X 10(-7) M) and showed an ethidium stoichiometry of one site/acetylcholine receptor monomer. Ethidium was completely displaced by noncompetitive inhibitors such as phencyclidine, histrionicotoxin, and dibucaine. The enhanced fluorescence lifetime of the bound species showed that the increased fluorescence intensity reflects a 13-fold increase in quantum yield for the complex compared to ethidium in buffer. Fractional dissociation of ethidium with phencyclidine produced a double-exponential fluorescence decay rate with lifetime components characteristic of ethidium free in solution and bound to the receptor. These data argue that the alterations in ethidium fluorescence elicited by other ligands is due to a change in the fraction of specifically bound ethidium rather than a change in quantum yield of a pre-existing ethidium-acetylcholine receptor complex. The extent of polarization indicates that bound ethidium is strongly immobilized. The magnitude of the quantum yield enhancement and the shifts of excitation and emission maxima of bound ethidium suggest that its binding site is within a hydrophobic domain with limited accessibility to the aqueous phase.  相似文献   

9.
The nicotinic acetylcholine receptor (nAChR) is one of five structurally related membrane proteins required for communication between approximately 10(12) cells of the mammalian nervous system. The receptor is inhibited by both therapeutic agents and abused drugs. Understanding the mechanism of noncompetitive allosteric inhibitors of the nicotinic acetylcholine receptor is a long-standing and intensely investigated problem. During the past two decades, many attempts have been made to find drugs that prevent cocaine inhibition, including the synthesis of hundreds of cocaine analogues and derivatives, so far without success. The use of newly developed transient kinetic techniques in investigations of the inhibition of the receptor by the anticonvulsant MK-801 [(+)-dizocilpine] and the abused drug cocaine led to an inhibition mechanism not previously proposed. This mechanism indicates the properties of compounds that would prevent allosteric inhibition of the receptor and how to test for such compounds. Here we present the first evidence that small organic compounds (cocaine derivatives) exist that prevent cocaine and MK-801 inhibition of this receptor. These compounds are RTI-4229-70, a previously synthesized cocaine derivative, and based on its structure four newly synthesized cocaine derivatives, RCS-III-143, RCS-III-140A, RCS-III-218, and RCS-III-202A. Because the nAChR desensitizes rapidly, to make the required measurements a cell-flow technique with a time resolution of 10 ms was used to equilibrate BCH(3) cells containing the fetal mouse muscle-type nAChR with carbamoylcholine. The resulting whole-cell current pertaining to the nondesensitized nAChR was determined. Inhibitors and compounds that alleviate inhibition were tested by their effect on the whole-cell current.  相似文献   

10.
11.
We have examined the interaction of the nicotinic acetylcholine receptor with decidium diiodide, a bisquaternary analogue of ethidium containing 10 methylene groups between the endocyclic and trimethylamino quaternary nitrogens. Decidium inhibits mono-[125I]iodo-alpha-toxin binding, inhibits agonist-elicited 22Na+ influx in intact cells, augments agonist competition with mono-[125I]iodo-alpha-toxin binding, and enhances [3H]phencyclidine (PCP) binding to a noncompetitive inhibitor site. These effects occur over similar concentration ranges (half-maximum effects between 0.1 and 0.4 microM). Thus, decidium binds to the agonist site and converts the receptor to a desensitized state exhibiting increased affinity for agonist and heterotropic inhibitors. These properties are similar to metaphilic antagonists characterized in classical pharmacology. At higher concentrations decidium associates directly with the noncompetitive inhibitor site identified by [3H]phencyclidine binding. Dissociation constants of decidium at this site in the resting and desensitized states are determined to be 29 and 1.2 microM, respectively. Analysis of fluorescence excitation and emission maxima reveal that binding to both the agonist and noncompetitive inhibitor sites is associated with approximately 2-fold enhancement of fluorescence. The excitation maximum for decidium bound at the agonist site appears at 490 nm while that for decidium bound at the noncompetitive inhibitor site appears at 530 compared to 480 nm in buffer. These results suggest that decidium experiences a more hydrophobic environment upon binding to the nicotinic acetylcholine receptor sites, particularly to the noncompetitive inhibitor site. Fluorescence energy transfer between N'-fluorescein isothiocyanate-lysine-23 alpha-toxin (FITC-toxin), and decidium is not detected when each is bound to one of the two agonist sites on the receptor. This allows a minimal distance to be estimated between fluorophores. In contrast, energy transfer is observed between decidium nonspecifically associated with the membrane or with nonspecific sites and the FITC-toxin at the agonist sites.  相似文献   

12.
Activation of a nicotinic acetylcholine receptor.   总被引:7,自引:2,他引:7       下载免费PDF全文
We studied activation of the nicotinic acetylcholine (ACh) receptor on cells of a mouse clonal muscle cell line (BC3H1). We analyzed single-channel currents through outside-out patches elicited with various concentrations of acetylcholine (ACh), carbamylcholine (Carb) and suberyldicholine (Sub). Our goal is to determine a likely reaction scheme for receptor activation by agonist and to determine values of rate constants for transitions in that scheme. Over a wide range of agonist concentrations the open-time duration histograms are not described by single exponential functions, but are well-described by the sum of two exponentials, a brief-duration and a long-duration component. At high concentration, channel openings occur in groups and these groups contain an excess number of brief openings. We conclude that there are two open states of the ACh receptor with different mean open times and that a single receptor may open to either open state. The concentration dependence of the numbers of brief and long openings indicates that brief openings do not result from the opening of channels of receptors which have only one agonist molecule bound to them. Closed-time duration histograms exhibit a major brief component at low concentrations. We have used the method proposed by Colquhoun and Sakmann (1981) to analyze these brief closings and to extract estimates for the rates of channel opening (beta) and agonist dissociation (k-2). We find that this estimate of beta does not predict our closed-time histograms at high agonist concentration (ACh: 30-300 microM; Carb: 300-1,000 microM). We conclude that brief closings at low agonist concentrations do not result solely from transitions between the doubly-liganded open and the doubly-liganded closed states. Instead, we postulate the existence of a second closed-channel state coupled to the open state.  相似文献   

13.
3-Trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) has been shown to be a potent noncompetitive antagonist (NCA) of the nicotinic acetylcholine receptor (AChR). Amino acids that contribute to the binding site for [(125)I]TID in the ion channel have been identified in both the resting and desensitized state of the AChR (White, B.H., and Cohen, J.B. (1992) J. Biol. Chem. 267, 15770-15783). To characterize further the structure of the NCA-binding site in the resting state channel, we have employed structural analogs of TID. The TID analogs were assessed by the following: 1) their ability to inhibit [(125)I]TID photoincorporation into the resting state channel; 2) the pattern, agonist sensitivity, and NCA inhibition of [(125)I]TID analog photoincorporation into AChR subunits. The addition of a primary alcohol group to TID has no demonstrable effect on the interaction of the compound with the resting state channel. However, conversion of the alcohol function to acetate, isobutyl acetate (TIDBIBA), or to trimethyl acetate leads to rightward shifts in the concentration-response curves for inhibition of [(125)I]TID photoincorporation into the AChR channel and a progressive reduction in the agonist sensitivity of [(125)I]TID analog photoincorporation into AChR subunits. Inhibition of [(125)I]TID analog photoincorporation by NCAs (e.g. tetracaine) as well as identification of the sites of [(125)I]TIDBIBA photoincorporation in the deltaM2 segment indicate a common binding locus for each TID analog. We conclude that relatively small additions to TID progressively reduce its ability to interact with the NCA site in the resting state channel. A model of the NCA site and resting state channel is presented.  相似文献   

14.
B G Wallace  Z Qu  R L Huganir 《Neuron》1991,6(6):869-878
Agrin causes acetylcholine receptors (AChRs) on chick myotubes in culture to aggregate, forming specializations that resemble the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction. Here we report that treating chick myotubes with agrin caused an increase in phosphorylation of the AChR beta, gamma, and delta subunits. H-7, a potent inhibitor of several protein serine kinases, blocked agrin-induced phosphorylation of the gamma and delta subunits, but did not prevent either agrin-induced AChR aggregation or phosphorylation of the beta subunit. Experiments with anti-phosphotyrosine antibodies demonstrated that agrin caused an increase in tyrosine phosphorylation of the beta subunit that began within 30 min of adding agrin to the myotube cultures, reached a plateau by 3 hr, and was blocked by treatments known to block agrin-induced AChR aggregation. Anti-phosphotyrosine antibodies labeled agrin-induced specializations as they do the postsynaptic apparatus. These results suggest that agrin-induced tyrosine phosphorylation of the beta subunit may play a role in regulating AChR distribution.  相似文献   

15.
Interactions of the synthetic pyrethroid allethrin with the nicotinic acetylcholine (ACh) receptor/channel were studied in membranes from Torpedo electric organ. Allethrin did not inhibit binding of [3H]ACh to the receptor sites, but inhibited noncompetitively binding of [3H]perhydrohistrionicotoxin ([3H]H12-HTX) to the ionic channel sites in a dose-dependent manner. The inhibition constant (Ki) of [3H]H12-HTX binding in absence of receptor agonist was 30 micro M, while in presence of 100 micro M carbamylcholine it was 4 micro M. This inhibitory effect of allethrin had a negative temperature coefficient. The high affinity binding of allethrin to the channel sites of the nicotinic ACh-receptor may be indicative of a postsynaptic site of action for pyrethroids, in addition to their known action on the sodium channel.  相似文献   

16.
To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, but agonist inhibits photoincorporation into all subunits by greater than 75% (White, B. H., Howard, S., Cohen, S. G., and Cohen, J. B. (1991) J. Biol. Chem. 266, 21595-21607). [125I]TID-labeled sites on the beta- and delta-subunits were identified by amino-terminal sequencing of both cyanogen bromide (CNBr) and tryptic fragments purified by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by reversed-phase high-performance liquid chromatography. In the absence of agonist, [125I]TID specifically labels homologous aliphatic residues (beta L-257, delta L-265, beta V-261, and delta V-269) in the M2 region of both subunits. In the presence of agonist, labeling of these residues is reduced approximately 90%, and the distribution of labeled residues is broadened to include a homologous set of serine residues at the amino terminus of M2. In the beta-subunit residues beta S-250, beta S-254, beta L-257, and beta V-261 are all labeled in the presence of carbamylcholine. This pattern of labeling supports an alpha-helical model for M2 with the labeled face forming the ion channel lumen. The observed redistribution of label in the resting and desensitized states provides the first direct evidence for an agonist-dependent rearrangement of the M2 helices. The efficient labeling of the resting state channel in a region capable of structural change also suggests a plausible model for AChR gating in which the aliphatic residues labeled by [125I]TID form a permeability barrier to the passage of ions. We also report increased labeling of the M1 region of the delta-subunit in the presence of agonist.  相似文献   

17.
An epitope was found on the alpha2-nicotinic isoform of the neuronal nicotinic acetylcholine receptor that would likely form salt bridges with quaternary ammonium compounds and a cation-pi interaction with the pi-cloud of an aromatic ring. Chlorisondamine, a nicotinic antagonist, exerts a long-lasting, if not permanent, blockade of the ion channel gated by acetylcholine. Blocking of the ion channel prevents nicotine from exerting its rewarding effect on the CNS. Chlorisondamine contains two quaternary ammonium groups and a tetrachloroisoindoline ring. We propose that chlorisondamine interacts with an epitope on the alpha2 isoform of the rat neuronal nicotinic receptor (residues 388-402, GEREETEEEEEEEDE), where one or both of the quaternary ammonium groups of chlorisondamine form a salt bridge with dither a glutamic acid side chain or a phosphate group, whereas the tetrachlorobenzene portion of the tetrachloroisoindoline ring interacts with the guanidinium group of arginine in a cation-pi association: In this work, a new way of probing the interaction of a receptor epitope (alpha2) with organic molecules (chlorisondamine and hexachlorobenzene) was undertaken using matrix assisted laser desorption/ionization mass spectrometry.  相似文献   

18.
19.
Current folding models for the nicotinic acetylcholine receptor (AChR) predict either four or five transmembrane segments per subunit. The N-terminus of each subunit is almost certainly extracellular. We have tested folding models by determining biochemically the cellular location of an intermolecular disulfide bridge thought to lie at the delta subunit C-terminus. Dimers of AChR linked through the delta-delta bridge were prepared from Torpedo marmorata and T.californica electric organ. The disulfide's accessibility to hydrophilic reductants was tested in a reconstituted vesicle system. In right-side-out vesicles (greater than 95% ACh binding sites outwards), the bridge was equally accessible whether or not vesicles had been disrupted by freeze--thawing or by detergents. Control experiments based on the rate of reduction of entrapped diphtheria toxin and measurements of radioactive reductant efflux demonstrated that the vesicles provide an adequate permeability barrier. In reconstituted vesicles containing AChR dimers in scrambled orientations, right-side-out dimers were reduced to monomers three times more rapidly than inside-out dimers, consistent with the measured rate of reductant permeation. These observations indicate that in reconstituted vesicles the delta-delta disulfide bridge lies in the same aqueous space as the ACh binding sites. They are most easily reconciled with folding models that propose an even number of transmembrane crossing per subunit.  相似文献   

20.
The nicotinic acetylcholine receptor (AChR) is a pentameric transmembrane protein (alpha 2 beta gamma delta) that binds the neurotransmitter acetylcholine (ACh) and transduces this binding into the opening of a cation selective channel. The agonist, competitive antagonist, and snake toxin binding functions of the AChR are associated with the alpha subunit (Kao et al., 1984; Tzartos and Changeux, 1984; Wilson et al., 1985; Kao and Karlin, 1986; Pederson et al., 1986). We used site-directed mutagenesis and expression of AChR in Xenopus oocytes to identify amino acid residues critical for ligand binding and channel activation. Several mutations in the alpha subunit sequence were constructed based on information from sequence homology and from previous biochemical (Barkas et al., 1987; Dennis et al., 1988; Middleton and Cohen, 1990) and spectroscopic (Pearce and Hawrot, 1990; Pearce et al., 1990) studies. We have identified one mutation, Tyr190 to Phe (Y190F), that had a dramatic effect on ligand binding and channel activation. These mutant channels required more than 50-fold higher concentrations of ACh for channel activation than did wild type channels. This functional change is largely accounted for by a comparable shift in the agonist binding affinity, as assessed by the ability of ACh to compete with alpha-bungarotoxin binding. Other mutations at nearby conserved positions of the alpha subunit (H186F, P194S, Y198F) produce less dramatic changes in channel properties. Our results demonstrate that ligand binding and channel gating are separable properties of the receptor protein, and that Tyr190 appears to play a specific role in the receptor site for acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号