首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The voltage-dependent calcium uptake in rat brain synaptosomes was measured under conditions in which [Ca2+]o/[Na+]i exchange was minimized to characterize the voltage-sensitive calcium channels from rats of different ages. In solutions of CaCl2 concentrations of less than 500 microM, the initial (5-s) calcium uptake declined by approximately 20-50% in 12- and 24-month-old rats relative to 3-month-old adults. Depolarization of synaptosomes from 3-month-old rats in a calcium-free medium or in the presence of 0.5 mM CaCl2 led to an exponential decline of the calcium uptake rate after 20 s (voltage- or voltage-and-calcium-dependent inactivation) to approximately 66 and 34% of the initial value with a t1/2 of 1.6 or 0.7 s, respectively. The presence of 1 microM nifedipine resulted in a 15-25% reduction of 45Ca2+ uptake rates, which appeared to affect noninactivating calcium channels, but addition of the calcium channel agonist Bay K 8644 was without effect. In 24-month-old rats, inactivation of 45Ca2+ uptake in calcium-free media was nondetectable, and in the presence of 0.5 mM CaCl2, the rate and extent of inactivation were also much lower than in 3-month-old animals (the t1/2 was 0.9 s, and the calcium uptake rate at 20 s was 55% of its initial value). Moreover, the presence of 1 microM nifedipine was without effect on initial calcium uptake or inactivation in synaptosomes from 24-month-old rats. These results indicate that the decrease in calcium channel-mediated 45Ca2+ uptake involves an inhibition or block of both dihydropyridine-resistant and -sensitive calcium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In the present study, we have investigated the role of Ca2+ in the coupling of membrane depolarization to neurotransmitter secretion. We have measured (a) intracellular free Ca2+ concentration ([Ca2+]i) changes, (b) rapid 45Ca2+ uptake, and (c) Ca2+-dependent and -independent release of endogenous glutamate (Glu) and gamma-aminobutyric acid (GABA) as a function of stimulus intensity by elevating the extracellular [K+] to different levels in purified nerve terminals (synaptosomes) from rat hippocampus. During stimulation, Percoll-purified synaptosomes show an increased 45Ca2+ uptake, an elevated [Ca2+]i, and a Ca2+-dependent as well as a Ca2+-independent release of both Glu and GABA. With respect to both amino acids, synaptosomes respond on stimulation essentially in the same way, with maximally a fourfold increase in Ca2+-dependent (exocytotic) release. Ca2+-dependent transmitter release as well as [Ca2+]i elevations show maximal stimulation at moderate depolarizations (30 mM K+). A correlation exists between Ca2+-dependent release of both Glu and GABA and elevation of [Ca2+]i. Ca2+-dependent release is maximally stimulated with an elevation of [Ca2+]i of 60% above steady-state levels, corresponding with an intracellular concentration of approximately 400 nM, whereas elevations to 350 nM are ineffective in stimulating Ca2+-dependent release of both Glu and GABA. In contrast, Ca2+-independent release of both Glu and GABA shows roughly a linear rise with stimulus intensity up to 50 mM K+. 45Ca2+ uptake on stimulation also shows a continuous increase with stimulus intensity, although the relationship appears to be biphasic, with a plateau between 20 and 40 mM K+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
[14C]Acetylcholine (ACh) release and parallel alterations in 45Ca2+ uptake and intrasynaptosomal free CA2+ concentration ([Ca2+]i) were measured in guinea-pig brain cortex synaptosomes. Depolarization by high K+ concentrations caused a rapid transient increase in Ca2+ uptake, terminating within 60 s (rate constant = 0.060 s-1; t1/2 = 11.6 s). This resulted in a rapid increase (within 1 s) in [Ca2+1]i, which then fell to a maintained but still-elevated plateau level (t1/2 for the decline was 15 s). Peaks of [Ca2+]i showed a sigmoidal dependence on depolarization, contrasting with the simple linear dependence of plateau levels of [Ca2+]i. The K+-evoked ACh release also had two phases: a fast initial increase (t1/2 = 11.3 s), which terminated within 60 s, was followed by a slow additional increase during sustained depolarizations of up to 10 min. Depolarization by veratridine led to a slow gradual increase in Ca2+ uptake (t1/2 = 130 s) over a 10-min incubation period, whereas an elevated plateau level of [Ca2+]i was achieved within 2 min (without a rapid peak elevation). The Ca2+-dependent fraction of the veratridine-evoked ACh release correlated with the increase in [Ca2+]i rather than with Ca2+ uptake. Using two different methods of depolarization partially circumvented the time limitations imposed by a buffering Ca2+ indicator and we suggest that, in the main, ACh is released in bursts associated with [Ca2+]i transients.  相似文献   

5.
Synaptosomes prepared from rat cerebral cortices on Percoll discontinuous density gradients were loaded with the fluorescent EGTA analogue Quin 2 to allow measurement of intracellular free [Ca2+]i. When either kappa-opiate or alpha 2-adrenoceptor agonists were incubated with the synaptosomes, there was a highly significant (p less than 0.004, p less than 2.7 X 10(-6), respectively) reduction in intrasynaptosomal free [Ca2+]i relative to controls. As these synaptosomes are not depolarised, the data suggest that both alpha 2-adrenoceptor agonists and kappa-opiate agonists inhibit neurotransmitter release, decreasing the availability of intraneuronal [Ca2+]i rather than altering Ca2+ entry. However, when these two agonists were coincubated, there was a complete abolition of the effects of either agonist; in fact, there was an apparent increase in the intrasynaptosomal free [Ca2+]i. Neither morphine nor [D-Ala2-D-Leu5]enkephalin, mu and delta opiate agonists respectively, had any significant effect on intrasynaptosomal free [Ca2+]i. These results show that the individual effects of clonidine and dynorphin A1-13 are in keeping with the role of these substances at autoreceptors controlling neurotransmitter release. The mutual antagonism of their effects on [Ca2+]i is more difficult to explain but it may be a mechanism that prevents the occurrence of excessive inhibition of neuronal systems.  相似文献   

6.
The mechanisms by which an elevated KCl level and the K+-channel inhibitor 4-aminopyridine induce release of transmitter glutamate from guinea-pig cerebral cortical synaptosomes are contrasted. KCl at 30 mM caused an initial spike in the cytosolic free Ca2+ concentration ([Ca2+]c), followed by a partial recovery to a plateau 112 +/- 13 nM above the polarized control. The Ca2+-dependent release of endogenous glutamate, determined by continuous fluorimetry, was largely complete by 3 min, by which time 1.70 +/- 0.35 nmol/mg was released. [Ca2+]c elevation and glutamate release were both insensitive to tetrodotoxin. KCl-induced elevation in [Ca2+]c could be observed in both low-Na+ medium and in the presence of low concentrations of veratridine. 4-Aminopyridine at 1 mM increased [Ca2+]c by 143 +/- 18 nM to a plateau similar to that following 30 mM KCl. The initial rate of increase in [Ca2+]c following 4-aminopyridine administration was slower than that following 30 mM KCl, and a transient spike was less apparent. Consistent with this, the 4-aminopyridine-induced net uptake of 45Ca2+ is much lower than that following an elevated KCl level. 4-Aminopyridine induced the Ca2+-dependent release of glutamate, although with somewhat slower kinetics than that for KCl. The measured release was 0.81 nmol of glutamate/mg in the first 3 min of 4-aminopyridine action. In contrast to KCl, glutamate release and the increase in [Ca2+]c with 4-aminopyridine were almost entirely blocked by tetrodotoxin, a result indicating repetitive firing of Na+ channels. Basal [Ca2+]c and glutamate release from polarized synaptosomes were also significantly lowered by tetrodotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The relationship between intrasynaptosomal total (CaT) and free ([Ca2+]i) calcium and 45Ca accumulation was studied under physiological and K(+)-depolarised conditions in rat cortical synaptosomes. Under physiological conditions, CaT (10.7 mM) was approximately 10,000 times higher than [Ca2+]i (118 nM), showing that there is a large reservoir of sequestered calcium in synaptosomes. 45Ca accumulation was rapid (initial rate, 3.4 nmol/mg protein/min), substantial (7 nmol/mg protein in 2 min), and depolarisation dependent, and reached equilibrium after 5 min. At equilibrium, only 10% of CaT was freely exchangeable. This pool was much larger than the free Ca2+ pool. CaT, [Ca2+]i, and 45Ca accumulations were directly related to the Ca2+ concentration in the buffer, suggesting that [Ca2+]i is not highly conserved but is maintained by simple equilibria between the various pools. Clonidine reduced 45Ca accumulation in a time- and dose-dependent manner. Maximum inhibition (40% at 100 microM) occurred at 2 min and the IC50 was 80 nM. The reduction caused by clonidine (1 microM) reached equilibrium after 5 min, but this equilibrium value was lower than in controls, suggesting that clonidine changes the exchangeable Ca2+ pool size. The effects of clonidine (1 microM) on [Ca2+]i (26% reduction) and on 45Ca accumulation (24% reduction) were most apparent under physiological conditions. However, while it was not dependent on depolarisation, it did not occur in physiological buffer containing low K+ concentration (0.1-1 mM). The inhibitory effect of clonidine on 45Ca accumulation is receptor mediated as it was antagonised by idazoxan (1 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

9.
Developmental changes in intracellular Ca2+ stores in brain was studied by examining: (1) IP3- and cADPR-induced increase in [Ca2+]i in synaptosomes; (2) Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; (3) TG-induced inhibition of Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; and (4) gene expression of Ca(2+)-ATPase pump in neurons obtained from brains of the new-born and the 3-week-old rats. IP3 (EC50 310 +/- 8 nM, 200% maximum increase in [Ca2+]i) and cADPR (EC50 25 +/- 3 nM, greater than 170% maximum increase in [Ca2+]i) both were potent agonist of Ca2+ release from internal stores in synaptosomes obtained from the 3-week-old rats. However, IP3 (EC50 250 +/- 10 nM, 175 maximum increase in [Ca2+]i) was a potent, but cADPR (EC50 300 +/- 20 nM, 75% maximum increase) was a poor agonist of Ca2+ release from intracellular stores in synaptosomes obtained from the new-born rats. [3H]IP3, [32P]cADPR and [3H]Ry binding in the new-born samples were significantly less than that in the 3-week-old samples. [3H]Ry binding to its receptor was more sensitive to cADPR in microsomes from the 3-week-old rats than those from the new-born rats. Microsomes from the new-born rats exhibited TG-sensitive (IC50 30 +/- 4 nM) and TG-insensitive forms of Ca(2+)-ATPase, while microsomes from the 3-week-old rats exhibited only the TG-sensitive form of Ca(2+)-ATPase (5 +/- 1 nM IC50). Microsomes from the 3-week-old rats were more sensitive to TG but less sensitive to IP3, while microsomes from the new-born rats were more sensitive to IP3 but less sensitive to TG. The lower TG sensitivity of the new-born Ca2+ store may be because they poorly express a 45 amino acid C-terminal tail of Ca(2+)-ATPase that contains the TG regulatory sites. This site is adequately expressed in the older brain. This suggests that: (1) the new-born brain contains fully operational IP3 pathway but poorly developed cADPR pathway, while the older brain contains both IP3 and cADPR pathways; and (2) a developmental switch occurs in the new-born Ca(2+)-ATPase as a function of maturity.  相似文献   

10.
The LAN-1 clone, a cell line derived from a human neuroblastoma, possesses muscarinic receptors. The stimulation of these receptors with increasing concentrations of carbachol (CCh; 1-1,000 microM) caused a dose-dependent increase of the intracellular free Ca2+ concentration ([Ca2+]i). This increase was characterized by an early peak phase (10 s) and a late plateau phase. The removal of extracellular Ca2+ reduced the magnitude of the peak phase to approximately 70% but completely abolished the plateau phase. The muscarinic-activated Ca2+ channel was gadolinium (Gd3+) blockade and nimodipine and omega-conotoxin insensitive. In addition, membrane depolarization did not cause any increase in [Ca2+]i. The CCh-induced [Ca2+]i elevation was concentration-dependently inhibited by pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, two rather selective antagonists of M1 and M3 muscarinic receptor subtypes, respectively, whereas methoctramine, an M2 antagonist, was ineffective. The coupling of M1 and M3 receptor activation with [Ca2+]i elevation does not seem to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein or by the diacylglycerol-protein kinase C system. The mobilization of [Ca2+]i elicited by M1 and M3 muscarinic receptor stimulation seems to be dependent on an inositol trisphosphate-sensitive intracellular store. In addition, ryanodine did not prevent CCh-induced [Ca2+]i mobilization, and, finally, LAN-1 cells appear to lack caffeine-sensitive Ca2+ stores, because the methylxanthine was unable to elicit intracellular Ca2+ mobilization, under basal conditions, after a subthreshold concentration of CCh (0.3 microM), or after thapsigargin.  相似文献   

11.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

12.
We have demonstrated that prostaglandin E2 (PGE2) treatment of bovine adrenal chromaffin cells results in a sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in these cells. Because the continued elevation of [Ca2+]i was dependent on extracellular Ca2+ concentration, it can be assumed that the PGE2-induced [Ca2+]i increase is due, at least in part, to an opening of membrane Ca2+ channels. In this study, we used electrophysiological methods to examine the mechanism of the PGE2-induced [Ca2+]i increase directly. Puff application of PGE2 to the external medium resulted in a prolonged depolarization in about half of the chromaffin cells examined. In whole-cell voltage-clamp recordings, an increase in inward current was observed over a 6-7 min period following bath application of PGE2 (greater than or equal to 10 microM), even in the absence of external Na+. This inward current was abolished when the recordings were made with the cells in a Ca2(+)-free medium, but it was not inhibited by Mn2+, a blocker of voltage-dependent Ca2+ channels. In cell-attached patch-clamp configuration, PGE2 produced an increase in the opening frequency of inward currents. The reversal potential of the PGE2-induced currents was about +40 mV, which is close to the reversal potential of the Ca2+ channel. The opening frequency was not affected by membrane potential changes. In inside-out patch-clamp configuration, inositol 1,4,5-trisphosphate (2 microM) added to the cytoplasmic side activated the Ca2(+)-channel currents, but PGE2 was ineffective when applied to the cytoplasmic side. These results suggest that PGE2 activates voltage-independent Ca2+ channels in chromaffin cells through a diffusible second messenger, possibly inositol 1,4,5-trisphosphate.  相似文献   

13.
We recently reported that prostaglandin E2 (PGE2) stimulates phosphoinositide metabolism accompanied by an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cultured bovine adrenal chromaffin cells. In the present study, temporal and spatial changes in [Ca2+]i induced by PGE2 in fura-2-loaded individual cells were investigated by digital image microscopy and were compared with those induced by nicotine and histamine. Image analysis of single cells revealed that responses to PGE2 showed asynchrony with the onset of [Ca2+]i changes. After a lag time of 10-30 s, PGE2-induced [Ca2+]i changes took a similar prolonged time course in almost all cells: a rapid rise followed by a slower decline to the basal level over 5 min. Few cells exhibited oscillations in [Ca2+]i. In contrast, nicotine and histamine induced rapid and transient [Ca2+]i changes, and these [Ca2+]i changes were characteristic of each stimulant. Whereas pretreatment of the cells with pertussis toxin (100 ng/ml, 6 h) did not block the response to any of these stimulants, treatment with 12-O-tetradecanoylphorbol 13-acetate (100 nM, 10 min) completely abolished [Ca2+]i changes elicited by PGE2 and histamine. In a Ca2(+)-free medium containing 3 mM EGTA, or in medium to which La3+ was added, the [Ca2+]i response to nicotine disappeared, but that to histamine was not affected significantly. Under the same conditions, the percentage of the cells that responded to PGE2 was reduced to 37% and the prolonged [Ca2+]i changes induced by PGE2 became transient in responding cells, suggesting that the maintained [Ca2+]i increase seen in normal medium is the result of a PGE2-stimulated entry of extracellular Ca2+. Whereas the organic Ca2(+)-channel blocker nicardipine inhibited [Ca2+]i changes by all stimulants at 10 microM, these [Ca2+]i changes were not affected by any of the organic Ca2(+)-channel blockers, i.e., verapamil, diltiazem, nifedipine, and nicardipine, at 1 microM, a concentration high enough to inhibit voltage-sensitive Ca2+ channels. These results demonstrate that PGE2 may promote Ca2+ entry with concomitant release of Ca2+ from intracellular stores and that the mechanism(s) triggered by PGE2 is apparently different from that by histamine or nicotine.  相似文献   

14.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

15.
Release of preaccumulated, tritium-labeled dopamine ([3H]DA) from preparations of isolated nerve terminals (synaptosomes) of rat median eminence (ME) and corpus striatum (CS) was examined over short time intervals (1-20 s). In both preparations, basal efflux of [3H]DA was linear with time. Depolarization with high K+ resulted in an initial rapid release of [3H]DA which stabilized by 20 s, whereas veratridine elicited an increased rate of release over basal levels that was linear over the first 20 s. The calculated rate constants of release for both the initial phase of K+- and the veratridine-stimulated release were approximately threefold greater in CS than in ME synaptosomes. The major component of the high K+-induced release of [3H]DA from both synaptosome preparations increased as a graded function of [Ca2+]o. However, a smaller component, independent of external Ca2+, existed in both ME and CS synaptosomes. Increasing the [Mg2+] in the external solution resulted in a right shift of both the [K+]o and the [Ca2+]o dose-response curves, consistent with actions of Mg2+ on screening surface membrane charges and blocking voltage-dependent Ca2+ channels. In all studies, steady-state uptake of the [3H]DA was about twofold greater into CS than into ME synaptosomes. Moreover, the fraction of incorporated [3H]DA released by stimulation from the CS was much greater than that released from ME synaptosomes. These data are consistent with differences between these two types of dopaminergic terminals with respect to packaging and/or distribution of the accumulated neurotransmitter in intraneuronal pools, as well as marked differences in the apparent kinetics of DA release.  相似文献   

16.
Addition of D-aspartate, a substrate for the high-affinity transport of acidic amino acid transmitters, to suspensions of rat brain synaptosomes increased the rate of O2 consumption, uptake of 86Rb, and transport of 2-[3H]deoxyglucose. Stimulation of all three processes was abolished in the presence of ouabain. D-Aspartate had no effect on respiration in the medium in which NaCl was replaced by choline chloride. The ratio of the ouabain-sensitive increase in 86Rb uptake to that in O2 consumption was 12 to 1, which gives a calculated 86Rb(K+)/ATP of 2. It is concluded that electrogenic, high-affinity transport of sodium-D-aspartate into synaptosomes stimulates the activity of the Na+/K+ pump through an increase in [Na+]i.  相似文献   

17.
The presynaptic Ca2+ concentration ([Ca]i) was evaluated by studying intracellular free Ca2+ with quin-2 and fura-2 in synaptosomal preparations. The synaptosomal preparations were purified with hyperosmotic (sucrose) and isoosmotic (Percoll) density gradient centrifugation. Synaptosomes are most viable in the heavier fractions of the density gradients. These synaptosomal fractions exhibit the lowest [Ca]i, [204 +/- 2 nM for Percoll (C-band) synaptosomes, loaded at 30 degrees C with the acetoxymethyl ester of fura-2 (fura-2-AM)], a high stability during prolonged incubations at 37 degrees C, and a more potent response to membrane depolarization by elevated extracellular [K+]. [Ca]i measurement was critically dependent on dye loading, calibration, type of dye used, synaptosomal preparation, and incubation temperature (30 degrees or 37 degrees C). Loading quin-2 in synaptosomes inserts a considerable buffer component in the synaptosomal [Ca]i regulation, and consequently there is a quin-2 dependency of [Ca]i, independent of endogenous heavy metal ions. Use of fura-2 is preferable in synaptosomes, although above a critical fura-2-AM/protein ratio during loading ester hydrolysis is not complete, giving rise to errors in [Ca]i determination. Ionomycin is a selective tool to detect the presence of partially hydrolyzed esters and saturate indicators in the cytosol with Ca2+ for calibration. Parallel studies on lactate dehydrogenase and fura-2 fluorescence indicate that synaptosomal viability is very sensitive to prolonged incubations at 37 degrees C. This study shows the applicability of measuring steady-state [Ca]i and dynamic [Ca]i changes quantitatively in fura-2-loaded synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The roles of the intracellular calcium pool involved in regulating the Ca2+ profile and the neuronal survival rate during development were studied by using thapsigargin (TG), a specific inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase in cultured cerebellar granule neurons. Measuring the neuronal [Ca2+]i directly in the culture medium, we found a bell-shaped curve for [Ca2+]i versus cultured days in cerebellar granule neurons maintained in medium containing serum and 25 mM K+. The progressive increase in [Ca2+]i of the immature granule neurons (1-4 days in vitro) was abolished by TG, which resulted in massive neuronal apoptosis. When the [K+] was lowered from 25 to 5 mM, neither the progressively increasing [Ca2+]i nor the survival of immature granule neurons was significantly changed over 24-h incubation. Similarly, TG caused a dramatic decrease in the [Ca2+]i and survival rate of these immature neurons when switched to 5 mM K+ medium. Following maturation, the granule neurons became less sensitive to TG for both [Ca2+]i and neuronal survival. However, TG can protect mature granule neurons from the detrimental effect of switching to a 5 mM K+ serum-free medium by decreasing [Ca2+]i to an even lower level than in the respective TG-free group. Based on these findings, we propose that during the immature stage, TG-sensitive ER Ca2+-ATPase plays a pivotal role in the progressive increase of [Ca2+]i, which is essential for the growth and maturation of cultured granule neurons.  相似文献   

19.
Ca2+ blood serum level was reduced by 34.5% in rats with hypoparathyroidism (HPT) on the 7th-12th day after the damage of parathyroid glands. Synaptosomes isolated from the brain cortex of rats during this period accumulated in a normal medium more 45Ca2+ than synaptosomes from healthy animals. In potassium depolarization, control and experimental synaptosomes accumulated more 45Ca2+, however in HPT the increment in 45Ca2+ uptake in high potassium medium was less temperature-dependent. In normal medium 3H-GABA uptake and release by synaptosomes from the brain of rats with HPT slightly differed from those in the control. On the contrary, 3H-GABA release induced by synaptosome depolarization was depressed in HPT. It is suggested that nerve terminal excretory function disturbances contribute to increased excitability of the central nervous system in hypoparathyroidism.  相似文献   

20.
The modulation of the intrasynaptosomal concentration of Ca2+, [Ca2+]i, by Na+/Ca2+ exchange was studied using Indo-1 fluorescence. The electrochemical gradient of Na+ was manipulated by substituting Li+ or choline for Na+ in the external medium and, then, the influx of 45Ca2+ and the [Ca2+]i were measured. It was found that the increase in [Ca2+]i induced by K+ depolarization is lower if the value of [Ca2+]i has been previously raised by Na+/Ca2+ exchange, suggesting that Ca2+ entering by Na+/Ca2+ exchange reduces the Ca2+ entering by voltage-dependent calcium channels. Our results show that a value of [Ca2+]i of about 650 nM induced by Na+/Ca2+ exchange reduces by 50% the Ca2+ entering due to K+ depolarization and no Ca2+ enters through the channels if the [Ca2+]i is previously raised above about 800 nM. Furthermore, predepolarization of the synaptosomes in a Ca-free medium also inhibits by at least 40% the [Ca2+]i rise through Ca2+ channels. Thus, the results suggest that both predepolarization and [Ca2+]i rise due to Na+/Ca2+ exchange decrease the Ca2+ entering by voltage-sensitive Ca2+ channels. The Ca2+ entering by Na+/Ca2+ exchange might contribute to the regulation of neurotransmitter release. Our results also show that the presence of Li+ in the external medium decreases the buffering capacity of synaptosomes, probably by releasing Ca2+ from mitochondria by Li+/Ca2+ exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号