首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously shown that neurite outgrowth from 6-day chick embryo dorsal root ganglia (DRG) in vitro was stimulated when nerve growth factor (NGF) and pulsed magnetic fields (PMF) are used in combination. 392 DRGs were studied in a field excited by a commercial PMF generator. We have now analyzed an additional 416 DRGs exposed to very similar PMF's produced by an arbitrary wave from generator and power amplifier. We reproduced our previous findings that combination of NGF and bursts of asymmetric, 220 μs-wide, 4.0 mT-peak pulses induced significantly (p<0.05) greater outgrowth than NGF alone, that fields without NGF do not significantly alter outgrowth, and that, unlike NGF alone, 4.0 mT fields and NGF can induce asymmetric outgrowth. The asymmetry does not seem to have a preferred orientation with respect to the induced electric field. Analysis of the data for the entire 808 DRGs confirms these findings. Importantly, we find similar results for pulse bursts repeated at 15 or 25 Hz. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
The influence of a pulsed magnetic field (PMF; sawtooth with 45-μs linear rise time and 5-μs decay time, peak strength of 15 μT, and frequency 20 pps) on the embryogenesis of CBA/S mice was investigated in five experiments based on a total of 707 exposed and 543 unexposed primigravidas. Sham and PMF exposures began on day 1 of gestation (experiments 1 and 2), on day 2 (experiment 3), on day 5 (experiment 4). and on day 7 (experiment 5): all exposures continued until day 19 post conception (p.c.) when they were terminated, at which time the following variables were measured: number of implants; number of placental resorptions; number of living fetuses; number of dead fetuses; number of malformations in living and dead fetuses; and length and body mass of living fetuses. Control dams were sham-exposed concurrently with corresponding. PMF-exposed dams. With the exception of experiment 5, in which exposure to PMF started on day 7 p.c., all groups of exposed mice had significantly more placental resorptions when compared with concurrent controls. The increased resorption rate was not reflected in a reduction in litter size or in the number of litters. A significant increase in malformed fetuses was not seen in any of the exposed groups, or when groups were pooled. Only in experiment 1 was the number of dead fetuses affected by exposure to PMF. The effect of PMF on the implantation rate was not significant. Body mass and length of exposed fetuses were significantly reduced only when the PMF treatment began on day 7 p.c. That PMF-treated mice had significantly more placental resorptions when exposure began on day 5 p.c. or earlier (before implantation), but not when exposure began on day 7 (after implantation), may indicate a causative pre-implantation effect. Because a PMF-induced increase in the number of resorptions has not been observed in other strains of mice, the effect might be strain-related. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The synthesis of collagen by chick bone rudiments in vitro   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
Several investigators have reported robust, statistically significant results that indicate that weak (∼ 1 μT) magnetic fields (MFs) increase the rate of morphological abnormalities in chick embryos. However, other investigators have reported that weak MFs do not appear to affect embryo morphology at all. We present the results of experiments conducted over five years in five distinct campaigns spanning several months each. In four of the campaigns, exposure was to a pulsed magnetic field (PMF); and in the final campaign, exposure was to a 60 Hz sinusoidal magnetic field (MF). A total of over 2500 White Leghorn chick embryos were examined. When the results of the campaigns were analyzed separately, a range of responses was observed. Four campaigns (three PMF campaigns and one 60 Hz campaign) exhibited statistically significant increases (P ≥ 0.01), ranging from 2-fold to 7-fold, in the abnormality rate in MF-exposed embryos. In the remaining PMF campaign, there was only a slight (roughly 50%), statistically insignificant (P = 0.2) increase in the abnormality rate due to MF exposure. When the morphological abnormality rate of all of the PMF-exposed embryos was compared to that of all of the corresponding control embryos, a statistically significant (P ≥ .001) result was obtained, indicating that PMF exposure approximately doubled the abnormality rate. Likewise, when the abnormality rate of the sinusoid-exposed embryos was compared to the corresponding control embryos, the abnormality rate was increased (approximately tripled). This robust result indicates that weak EMFs can induce morphological abnormalities in developing chick embryos. We have attempted to analyze some of the confounding factors that may have contributed to the lack of response in one of the campaigns. The genetic composition of the breeding stock was altered by the breeder before the start of the nonresponding campaign. We hypothesize that the genetic composition of the breeding stock determines the susceptibility of any given flock to EMF-induced abnormalities and therefore could represent a confounding factor in studies of EMF-induced bioeffects in chick embryos. Bioelectromagnetics 18:431–438, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Pieces of 12- and 15-day-old chick embryo testes and ovaries were cultured in vitro in the presence of thyrotropin (TSH), gonadotropins (FSH + LH) and adrenocorticotropin (ACTH) for different periods. All the explants of treated gonads differentiated into typical testes or ovaries according to their genetic sex. The gonads of 12-and 15-day-old chick embryos showed a good response to both thyrotropic and gonadotropic stimulation. On the other hand, they did not respond to adrenocorticotropic stimulation. Fifteen-day-old chick embryo testes were grown in tissue culture in the presence of the said hormones. Gonadotropins and TSH enhanced the growth and migration of testicular cells as compared with the control or ACTH treated group. In addition, they maintained the germ cells on the upper surface of epithelial cells. These results have confirmed our previous results in vivo in that gonadotropins and thyrotropin hormones accelerated the development of 12- or 15-day-old chick embryo gonads.  相似文献   

9.
Summary Turnover of extracellular matrix (ECM) proteoglycans was studied in chick cartilaginous femur rudiments grown in organ culture. Femora from six-day-old embryos showed nearly normal growth rates during the first few days in culture. By labeling the rudiment with 35S-sulfate or 14C-glucosamine, it was demonstrated that the cartilaginous ECM undergoes rapid turnover. It was also found that the metabolic fate of the proteoglycans is to be released as macromolecules into the culture medium. When a rudiment was cut to obtain two epiphyses it was observed that each part grows and synthesizes proteoglycans at nearly normal rates, which indicates that the isolated epiphyses, like the whole rudiment, behave as autonomous systems. We suggest that the turnover of ECM components is part of the continuous remodelling process rudiments undergo during their growth and development. In order to study cell-ECM interaction in morphogenesis, we made an attempt to prepare an intact cell-free ECM. Epiphyses were heated at 45.2° C for 1 h. The treatment caused complete cessation of growth and biosynthesis. When the cut surface of a live epiphysis was brought into apposition to a heat-treated epiphysis and the attached pair placed in organ culture, it was found that the heat-treated epiphysis begins to grow and reaches almost the same size as its live counterpart. We discuss the possible advantage of this new experimental system for studies on the role of ECM in morphogenesis.  相似文献   

10.
11.
The development of spike potential mechanisms during cell differentiation was studied in chick myotubes formed in vitro from trypsin-dissociated myoblasts. The spike potential and its rate of rise were measured in myotubes from 4-14 day old cultures. A depolarizing current pulse was delivered to evoke the spike potential after the steady membrane potential had been adjusted to a standard level of -80 mV in all cases. This gives the greatest maximum rate of rise of the spike potential and eliminates variation due to differences in the resting membrane potential of the myotubes. The size and maximum rate of rise of the spike potential increased significantly during the period examined. The spike potential was blocked by tetrodotoxin in almost all myotubes. These results suggest that during differentiation myotubes develop the ability to generate a spike potential due to an inward current carried by sodium ions.  相似文献   

12.
Trypsin-dissociated myoblasts from leg muscle of 12-day chick embryos have been cultured in monolayers. After four days the muscle cultures have been confronted with fragments of the spinal cord of six-day chick embryos. Electrophysiological and morphological analysis demonstrate that characteristic neuromuscular transmission can develop in these cultures. Electrical stimulation of the cord fragment evokes contractions of innervated muscle fibers, from which end plate potentials and miniature end plate potentials with average frequency around one per second or more can be recorded. D-tubocurarine (1 μg/ml) suppresses reversibly these synaptic potentials. Non-innervated muscle fibers are sensitive to acetylcholine over all their surface, while innervated muscle fibers are sensitive at the regions where structures suggestive of motor end plate (“bulb-type”) are found. We can conclude that neuromuscular connections developed in vitro in our experiments are functional in respect of transmission of impulses but also in respect of neurotrophic influences for restriction of chemosensitivity.  相似文献   

13.
The role of insulin and l-thyroxine (L-T4) in stimulating myoblast proliferation and differentiation was investigated in vitro. A superphysiological concentration of insulin or a physiological concentration of L-T4 was added to cultures of myoblasts from 11-day-old chick embryo thigh muscle, grown in serum-free DM-153 medium. While the addition of insulin resulted in an increase in the total number of cells, in the extent of fusion, and in the creatine phosphokinase (CPK) activity, myotubes changed into globular structures which tended to degenerate rapidly. On the other hand, while the addition of L-T4 had less effect on myogenesis, myotubes retained their differentiated state longer. Furthermore, the two hormones exhibited synergistic effects. An increase in the initial cell density resulted in an increase in the amount of protein and CPK activity, irrespective of the presence or absence of the hormones. This suggests that the effect of insulin and L-T4 on myogenesis is not a differentiation-specific effect, but rather an indirect result of cell proliferation.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The strontium is an alkaline earth metal found in nature as trace element. Chemically similar to calcium, it is known to be involved in the human bone mineral metabolism. The strontium ranelate has been approved in therapy as drug with both anti-resorption and anabolic effects on bone tissues. Since few data in vivo are available, we used Danio rerio as animal model to evaluate the effects of strontium on skeletal development. First, toxicity assay performed on zebrafish embryos estimated the LC50 around 6 mM. Since several zebrafish bones are formed from cartilage mineralization, we evaluated whether strontium affects cartilage development during embryogenesis. Strontium does not perturb the development of the cartilage tissues before the endochondral osteogenesis takes place. About the mineralization process, we evidentiated an increase of vertebral mineralization respect to controls at lower strontium concentrations whereas higher concentration inhibited mineral deposition in dose dependent fashion. Our results evidentiated, in addition, that the calcium/strontium rate but not the absolute level of strontium modulates the mineralization process during embryonic osteogenesis.Zebrafish represents an excellent animal model to study the role of micronutrients in the development of the tissues/organs because the ions are not absorbed by intestine but assumed by skin diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号