首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
象山港春、夏季大中型浮游动物空间异质性   总被引:5,自引:0,他引:5  
为探明象山港大中型浮游动物空间分布特征及主要影响因素,分别于2010年4月、7月大、小潮期对浮游动物群落和相关环境因子进行调查。四个航次共检出浮游动物成体14大类64种、浮游幼体10大类14种,春、夏季群落结构差异极显著(P=0.001),物种更替率为66.7%,优势种差异明显,共同优势种仅有短尾类溞状幼虫(Brachyura zoea)和仔鱼(Fish larvae)两类幼体;同一季节大、小潮物种相似度约为60%,群落结构差异较小(P=0.031);春季生物量和丰度高于夏季,但物种多样性低于夏季。温度是浮游动物群落季节变化的主导因素。方差分析、聚类和多维尺度分析显示:浮游动物群落空间异质性分布方式受潮流影响,群落结构在大潮期梯度分布特征明显,小潮期通常呈斑块性分布;生物量、丰度和多样性等参数的空间分布取决于群落的分布特征,并受影响于该参数在狭湾口内外的差异。典范对应分析及环境参数统计分析表明:梯度分布主要由盐度、悬浮物的梯度性特征决定;主导斑块性分布的因素多样,不同情况下可能为水深、叶绿素a、营养盐和内外水团相互作用;梯度性和斑块性分布均受到潮流影响。总体来看,象山港浮游动物空间分布主要受水文因素控制,受化学和生物因素影响较弱,其中叶绿素a浓度仅在春季与浮游动物丰度有一定相关性,溶解氧、酸碱度和营养盐等水质参数对浮游动物空间分布几乎无直接影响。  相似文献   

2.
3.
Dispersal limitation is generally considered to have little influence on the spatial structure of biodiversity in microbial metacommunities. This notion derives mainly from the analysis of spatial patterns in the field, but experimental tests of dispersal limitation using natural communities are rare for prokaryotes and, to our knowledge, non-existent for viruses. We studied the effects of dispersal intensity (three levels) and patch heterogeneity (two levels) on the structure of replicate experimental metacommunities of bacteria and viruses using outdoor mesocosms with plankton communities from natural ponds and lakes. Low levels of dispersal resulted in a decrease in the compositional differences (beta diversity) among the communities of both bacteria and viruses, but we found no effects of patch heterogeneity. The reductions in beta diversity are unlikely to be a result of mass effects and only partly explained by indirect dispersal-mediated interactions with phytoplankton and zooplankton. Our results suggest that even a very limited exchange among local communities can alter the trajectory of bacterial and viral communities at small temporal and spatial scales.  相似文献   

4.
5.
Productivity and community structure of phytoplankton and zooplankton are influenced by hydrologic disturbances in many ways. In a recent modeling study it was suggested that pulsed inflows might enhance zooplankton performance, curb accumulation of phytoplankton accumulated biomass, and promote phytoplankton species diversity. We tested these predictions by performing microcosm experiments on natural plankton assemblages from the Nueces Delta, TX, USA. On three occasions (March, June, and September 2001), experiments of semi-continuous and flow-through design were conducted using natural plankton assemblages. We investigated the effect of two different inflow and nutrient loading regimes on zooplankton biomass, and phytoplankton biomass and diversity, i.e., continuous and pulsed inflows of 3 day frequency. Despite differences in initial community structure on these three occasions, as well as the very different communities that arose between experimental designs, our findings showed that pulsed inflows altered plankton dynamics. In all cases, pulsed inflows resulted in greater zooplankton biomass. In most cases, pulsed inflows resulted in lower phytoplankton biomass and higher diversity. We speculate that greater phytoplankton diversity in the pulsed flow treatments favored selectively feeding zooplankton, whose better performance prevented higher accumulation of phytoplankton biomass.  相似文献   

6.
7.
Movement of plankton through lake-stream systems   总被引:2,自引:0,他引:2  
1. River plankton are often assumed to come from upstream lakes, but the factors controlling the movement of plankton between lakes and rivers into outflow streams are unclear. We tested the possibility that the physical structure of the littoral zone near the lake outlet (depth, presence of macrophytes) and diurnal differences in plankton composition at the lake surface influence the movement of plankton from the lake into the stream and determine their persistence downstream. 2. Zooplankton and phytoplankton biomass, community composition and mean body size were compared between two deep lakes without macrophytes at the lake edge and two shallow lakes with macrophytes at the lake edge. Samples were collected day and night on three dates, in the lake centre, in the littoral zone adjacent to the lake outlet, at the outlet and at two sites downstream in Algonquin Park, Ontario, Canada. 3. The morphology of lake edges clearly affects the movement of lake zooplankton into outlet streams. Outlets draining deeper littoral zones had higher zooplankton biomass than shallow littoral outlets (P < 0.0001), but these differences disappeared within 50 m downstream of the lake. There was no difference in mean zooplankton body size among lake outlets or between littoral and outlet samples. However, shallow littoral zones were dominated by cyclopoid copepods and deeper littoral zones were dominated by Bosmina longirostris. In contrast, phytoplankton biomass entering the outlet was similar to that found within the lake and did not vary with lake outlet morphology. These effects were consistent across several sampling weeks and were not affected by surface zooplankton biomass changes associated with diurnal vertical migration in the lake centre. 4. A comparison with published river zooplankton data suggests that zooplankton are rapidly eliminated from shallow outlet streams (≤1 m deep) but persist in most deeper outlet rivers (≥2 m deep). Because the depth of an outlet river determines downstream zooplankton community development, the contribution of lakes to river plankton communities may be influenced by the location of each lake within the drainage basin. These findings suggest that lake and outflow physical structure influences connection strength between spatially successive habitats.  相似文献   

8.
Zooplankton seasonal and inter‐annual dynamics were investigated in two neighbouring sand‐pit lakes with similar morphological features but different exploitation regime. We hypothesized that the dredging activities affected the zooplankton communities and the hydrochemical conditions of the studied lakes. Significant differences in zooplankton abundance were found. The analysis of similarity (ANOSIM) revealed that plankton communities were different between lakes and that the microcrustaceans largely contributed to the average dissimilarity. In particular, the lower densities of cladocerans and the presence of large‐size species in the lake still under dredging during this study appeared to be related to the resuspension of sand in the water column. We report how the zooplankton communities evolved toward an higher taxonomical and functional diversity after conclusion of the dredging activities. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
It is widely believed that consumer control is a weak regulator of marine phytoplankton communities. It remains unclear, however, why this should be the case when marine consumers routinely regulate their prey at higher trophic levels. One possibility is that the weak consumer control of phytoplankton communities results from the inability of field researchers to effectively account for consumer–prey trophic relationships operating at the scale of the plankton. We explored this issue by reviewing studies of trophic control in marine plankton. Experimental studies indicate that size is a critical determinant of feeding relationships among plankton. In sharp contrast, of the 51 field studies reviewed, 78% did not distinguish among the sizes or species of phytoplankton and their consumers, but instead assumed a general bulk phytoplankton–zooplankton trophic connection. Such an approach neglects the possibility that several trophic connections may separate the smallest phytoplankton (0.2 μm) from the larger zooplankton (~ 1000 μm), a remarkable size differential exceeding that between a mouse (~10 cm) and an elephant (~2500 cm). The size‐based approach we propose integrates theory, experiments and field observations and has the potential to greatly enhance our understanding of the causes and consequences of recently documented restructuring of plankton communities.  相似文献   

10.
During experiments in a south Norwegian fjord in March and April1979, distribution and development of zooplankton were investigatedin detail. Numbers of protozooplankton, meroplankton and holoplanktonwere determined as individual species. Strong water exchangecaused a high variability in plankton composition and biomass.Changes in salinity and temperature as well as numbers of planktonindividuals and in the percentage composition of the developmentalstages of the spring spawning Calanus finmarchicus revealedthat a wind-induced inflow of Skagerrak water along the southwestNorwegian coast also entered the Rosfjord. In contrast to theAtlantic water with low numbers of copepods from the hibernatinggeneration, in the Skagerrak water the spring generation ofC.finmarchicus had already developed up to the first and secondcopepodite stages. The Skagerrak water was already very richin phyto- and zooplankton organisms. Here, an increase in biomassover time mainly resulted from the development of younger toolder copepodite stages and from a considerable increase innumbers of the tintinnid, Leprotintinnus pellucidus. The verticaldistribution of plankton organisms and fecal pellets was closelyassociated with the occurrence and the stratification of watermasses coming into the Rosfjord.  相似文献   

11.
To clarify spatial and seasonal differences in net plankton and zoobenthos in Lake Tonle Sap, Cambodia, quantitative surveys were carried out at 14 stations in the north and south basins in high- and low-water seasons during 2003–2005. In the phytoplankton communities, a diatom Aulacoseira granulata dominated throughout the lake in the high-water seasons, while blue-green algae, mostly composed of Microcystis, surpassed other algae in the low-water season when the lake water was very turbid and the Secchi disk readings were only a few centimeters. In the low-water seasons, a bloom of floating blue-green algae occurred everywhere, especially prominent in the coastal areas. Protozoans and rotifers dominated the zooplankton communities. In the open-water stations, diversity was higher in high-water seasons in phytoplankton, while it was not significantly different between seasons in zooplankton. Composition of plankton communities in Lake Tonle Sap appears to have changed little since the 1950s, at least in phytoplankton, while the phytoplankton density appears to be higher in the present study. Among the macrozoobenthos, mollusks, oligochaetes and chironomids dominated in density, and mollusks exceeded others in biomass in both basins and seasons. The total densities of macrozobenthos were not high, being fewer than 1,300 m−2 throughout the stations and seasons. Possible reasons for the low zoobenthos abundance in the lake may include high predation pressures by benthivorous fish or unfavorable unstable and flocculant substrates.  相似文献   

12.
Food-web population models are rather sensitive to parameterization of functional response in predation terms. Theoretical studies predict enhancing of ecosystems’ stability for a functional response of sigmoid type (Holling type III). The choice of a correct type of response is especially important for modelling outcome of grazing control of algal blooms by zooplankton in nutrient-rich ecosystems. Extensive experiments on zooplankton feeding in laboratories show non-sigmoid nature of response for most herbivorous zooplankton species. As a consequence, there is a strong opinion in literature that the implementation of Holling III type grazing in plankton models is biologically meaningless. I argue, however, that such an ‘evident’ claim might be wrong and sigmoid functional responses in real plankton communities would emerge more often than was suggested earlier. Especially, this concerns plankton models without vertical resolution, which ignore heterogeneity in vertical distribution of species. Having conducted extensive literature search of data on zooplankton feeding in situ, I show that vertical heterogeneity in food distribution as well as active food searching behaviour of zooplankton can modify the type of functional response. In particular, the rate of food intake by the whole zooplankton population in the column, as a function of total amount of food, often exhibits a sigmoid behaviour, instead of a non-sigmoid one postulated previously based on laboratory experiments. This conceptual discrepancy is due to the ability of zooplankton to feed mostly in layers with high algal density. I propose a generic model explaining the observed alteration of type between overall and local functional responses. I show that emergence of Holling type III in plankton systems is due to mechanisms different from those well known in the ecological literature (e.g. food search learning, existence of alternative food, refuge for prey).  相似文献   

13.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

14.
This study was carried out in the northern Aegean Sea during late summer and spring. The aim was to examine the spatial and temporal distribution of the zooplankton community across a dynamic frontal area and to investigate how the oceanographic heterogeneity structures the composition of the zooplankton assemblages. The low-salinity and cold Black Sea water coming from the Dardanelles Strait is modified by mixing with the underlying warm and saline Aegean water. These hydrological features result in a pronounced thermohaline front in the northern Aegean Sea throughout the year. In both seasons, zooplankton was collected using both 45 and 200 µm mesh plankton nets. A high abundance of zooplankton was observed in the surface layer at the stations closest to the Dardanelles Strait on the stratified side of the front. The zooplankton distribution and community structure in the northern Aegean Sea were strongly influenced by the hydrological features. The frontal structure acts as a boundary for the zooplankton community. The surface layer at the stratified stations had the lowest copepod diversity, from where it increased with depth and horizontally as the stratification weakened outside of the front. The total abundance of zooplankton collected with the 200 µm net was between two and 20 times lower than samples taken with the 45 µm net. The most pronounced differences were observed for the adults and copepodids of the small genera Oithona, Oncaea and Microsetella. Thus, to manage and understand the transfer of primary production up the food chain in the Aegean Sea, the smaller fraction of copepods should be taken into account in future investigations.  相似文献   

15.
Eutrophication, often resulting from human activity, is a serious threat to aquatic communities. Theoretical analysis of this phenomenon, based on conceptual mathematical models, leads to controversial predictions known as Rosenzweig's paradox of enrichment. At the same time, field observations demonstrate that real plankton communities exhibit various mechanisms of self-regulation which can buffer negative effects of enrichment. In this paper, we study potential effects of zooplankton vertical migration on stability of plankton systems functioning. We consider an intrinsically unstable plankton model, which is characterized by an unlimited phytoplankton multiplication and population oscillations of increasing amplitude, and investigate whether vertical migrations of zooplankton can stabilize such a system at low plankton densities. By means of developing two different models accounting for different ecological situations, e.g. deep waters and shallow waters, we show that vertical migrations of zooplankton can result in stabilization of eutrophic plankton systems. Thus, we show that this mechanism, rarely taken into account in models of plankton dynamics, may be important for resolving the paradox of enrichment in plankton communities.  相似文献   

16.

Aim

To use a long-term collection of bulk plankton samples to test the capacity of DNA metabarcoding to characterize the spatial and seasonal patterns found within a range of zooplankton communities, and investigate links with concurrent abiotic data collected as part of Australia's Integrated Marine Observing System (IMOS) programme.

Location

Samples were sourced seasonally for 3 years from nine Pan-Australian marine sites (n = 90).

Methods

Here, we apply a multi-assay metabarcoding approach to environmental DNA extracted from bulk plankton samples. Six assays (targeting 16SrRNA and COI genes) were used to target, amplify and sequence the zooplankton diversity found within each sample. The data generated from each assay were filtered and clustered into OTUs prior to analysis. Abiotic IMOS data collected contemporaneously enabled us to explore the physical and chemical drivers of community composition.

Results

From over 25 million sequences, we identified in excess of 500 distinct taxa and detected clear spatial differences. We found that site and sea surface temperature are the most consistent predictors of differences between zooplankton communities. We detected endangered and invasive species such as the bryozoan Membranipora membranacea and the mollusc Maoricolpus roseus, and seasonal occurrences of species such as humpback whales (Megaptera novaeangliae). We also estimated the number of samples required to detect any significant seasonal changes. For OTU richness, this was found to be assay dependent and for OTU assemblage, a minimum of nine samples per season would be required.

Main Conclusion

Our results demonstrate the ability of DNA to capture and map zooplankton community changes in response to seasonal and spatial stressors and provide vital evidence to environmental stakeholders. We confirm that a metabarcoding method offers a practical opportunity for an ecosystem-wide approach to long-term biomonitoring and understanding marine biomes where morphological analysis is not feasible.  相似文献   

17.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

18.
1. We examined the temporal and spatial heterogeneity of zooplankton in lake surface waters during the spring of 3 years in Lake Washington, U.S.A., a large lake with a high production of sockeye salmon fry. 2. We show large within‐season and among‐year variation in the horizontal distribution of temperature, chlorophyll a concentration, and zooplankton in the lake. The main pattern, a delay in zooplankton population increase from the north‐ to the south‐end of the lake, recurred in each year and was persistent within each spring. 3. The delay is primarily caused by the development of a temperature gradient during spring warming, as cold mountain water enters the south end of the lake, while warm water enters the north end via a river draining a nearby lake. Climate factors, such as air temperature and precipitation during winter and spring, appear to influence the extent of the delay of zooplankton increase. 4. If the climate continues to warm, the temporal disconnection in zooplankton development between lake areas immediately influenced by cold river inflow and areas that are influenced by spring warming may increase in magnitude. Thus, the different areas of the lake may not contribute equally to fish production.  相似文献   

19.
In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity—a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water.  相似文献   

20.
This study attempts to describe changes in plankton biomass(including bacteria, phytoplankton, ciliates, rotifers, andcrustaceans) in the semi-arid, hypertrophic, freshwater wetland,Las Tablas de Daimiel National Park (central Spain), in relationto water inflow. An inter-annual comparison of 1996 and 1997,with contrasting rainfall, reveals that inflows in the formof flooding act as a bottom-up structuring force on total planktonbiomass. However, the responses of plankton biomass to floodingwere different in strength between the two years, which canbe attributed to shifts in plankton community structure. Crustaceanzooplankton conditioned total plankton biomass in 1996, basedon the relationship between the high individual biomass andcommunity development. Crust-aceans decreased in 1997, whilebacteria, phytoplankton and rotifers increased. The quantitativeincrease of the latter groups resulted in a higher total planktonbiomass in 1997. The key position of crustaceans in the wetlandplankton is also reflected in their capability for exertingsignificant top-down control, which was clearly evident in 1996but weaker in 1997, based on their numerical reduction. Statisticalanalyses provide evidence that the decline of trophic interactionsin 1997 is related to the strength of flooding in that year,thereby highlighting the significance of the disruptive actionof physical disturbance on biotic interactions in the plankton.Flooding and areal inundation were also shown to be significantfor spatial heterogeneity. In 1996, site-specific developmenttook place in the absence of prolonged flooding effects, resultingin high spatial heterogeneity. In 1997, however, remarkablehomogenization of plankton biomass occurred along the majorwater flow path. Thus, wetland landscape heterogeneity dependson inflows which condition areal inundation. This, in turn,influences plankton dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号