首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genital herpes is a major risk factor in acquiring human immunodeficiency virus type-1 (HIV-1) infection and is caused by both Herpes Simplex virus type 1 (HSV-1) and HSV-2. The amphipathic peptide C5A, derived from the non-structural hepatitis C virus (HCV) protein 5A, was shown to prevent HIV-1 infection but neither influenza nor vesicular stomatitis virus infections. Here we investigated the antiviral function of C5A on HSV infections. C5A efficiently inhibited both HSV-1 and HSV-2 infection in epithelial cells in vitro as well as in an ex vivo epidermal infection model. C5A destabilized the integrity of the viral HSV membrane. Furthermore, drug resistant HSV strains were inhibited by this peptide. Notably, C5A-mediated neutralization of HSV-1 prevented HIV-1 transmission. An in vitro HIV-1 transmigration assay was developed using primary genital epithelial cells and HSV infection increased HIV-1 transmigration. Treatment with C5A abolished HIV-1 transmigration by preventing HSV infection and by preserving the integrity of the genital epithelium that was severely compromised by HSV infection. In conclusion, this study demonstrates that C5A represents a multipurpose microbicide candidate, which neutralizes both HIV-1 and HSV, and which may interfere with HIV-1 transmission through the genital epithelium.  相似文献   

2.
旨在构建HSV-1HF株的扩增子载体,研究其在不同血清型HSV辅助下的包装通用性。经酶切HF株的BAC-HSV-1,获得oriS和pac元件并测序。以pSilencer2.0-U6为骨架,以DsRed为报告基因构建HSV-1HF株的扩增子载体,利用脂质体2000转染扩增子载体至Vero细胞,分别应用HSV-1HF株和HSV-2HG52辅助HSV-1扩增子载体进行包装,待产生细胞病变效应后取上清,再次感染Vero细胞,观察Vero细胞内红色荧光蛋白表达情况。本研究首次构建了HSV-1HF株的扩增子载体,鉴定了HSV-1HF株oriS和pac元件,HSV-1HF株扩增子载体可以被HSV-1HF株和HSV-2HG52株包装并扩增。  相似文献   

3.
4.
Herpes simplex virus type 1 (HSV-1) is one of the most common causes of sporadic encephalitis. The initial clinical course of HSV encephalitis (HSE) is highly variable, and the infection may be rapidly fatal. For effective treatment with antiviral medication, an early diagnosis of HSE is crucial. Subtle brain infections with HSV may be causally related to neuropsychiatric disorders such as Alzheimer's dementia. We investigated the feasibility of a noninvasive positron emission tomography (PET) imaging technique using [(18)F]FHPG as a tracer for the detection of HSE. For this purpose, rats received HSV-1 (infected group) or phosphate-buffered saline (control group) by intranasal application, and dynamic PET scans were acquired. In addition, the distribution of tracer accumulation in specific brain areas was studied with phosphor storage imaging. The PET images revealed that the overall brain uptake of [(18)F]FHPG was significantly higher for the infected group than for control animals. Phosphor storage images showed an enhanced accumulation of [(18)F]FHPG in regions known to be affected after intranasal infection with HSV. High-performance liquid chromatography metabolite analysis showed phosphorylated metabolites of [(18)F]FHPG in infected brains, proving that the increased [(18)F]FHPG uptake in infected brains was due to HSV thymidine kinase-mediated trapping. Freeze lesion experiments showed that damage to the blood-brain barrier could in principle induce elevated [(18)F]FHPG uptake, but this nonspecific tracer uptake could easily be discriminated from HSE-derived uptake by differences in the tracer kinetics. Our results show that [(18)F]FHPG PET is a promising tool for the detection of HSV encephalitis.  相似文献   

5.
Chinese hamster ovary (CHO) cells are traditionally regarded as nonpermissive cells for herpes simplex virus type 1 (HSV-1) infection as they lack the specific entry receptors, and modified CHO cells have been instrumental in the identification of HSV-1 receptors in numerous studies. In this report we demonstrate that the HSV-1 strain 17+ variant HSV1716 is able to infect unmodified CHO cells but only if the virus is propagated in baby hamster kidney (BHK) cells. Infection of CHO cells by BHK-propagated HSV1716 results in expression of immediate-early, early, and late viral genes, and infectious progeny virions are produced. In normally cultured CHO cells, up to a maximum of 50% of cells were permissive for BHK-propagated HSV1716 infection, with 24 h of serum starvation increasing this to 100% of CHO cells, suggesting that the mechanism used by BHK-propagated virus to infect CHO cells was cell cycle dependent. The altered tropism of HSV1716 was also evident in another nonpermissive mouse melanoma cell line and is an exclusive property resulting from propagation of the virus using BHK cells, as viruses propagated on Vero, C8161 (a human melanoma cell line), or indeed, CHO cells were completely unable to infect either CHO or mouse melanoma cells.  相似文献   

6.
D N Everly  Jr  G S Read 《Journal of virology》1997,71(10):7157-7166
During lytic herpes simplex virus (HSV) infections, the half-lives of host and viral mRNAs are regulated by the HSV virion host shutoff (Vhs) protein (UL41). The sequences of the UL41 polypeptides of HSV type 1 (HSV-1) strain KOS and HSV-2 strain 333 are 87% identical. In spite of this similarity, HSV-2 strains generally shut off the host more rapidly and completely than HSV-1 strains. To examine type-specific differences in Vhs function, we compared the Vhs activities of UL41 alleles from HSV-1(KOS) and HSV-2(333) by assaying the ability of a transfected UL41 allele to inhibit expression of a cotransfected reporter gene. Both HSV-1 and HSV-2 alleles inhibited reporter gene expression over a range of vhs DNA concentrations. However, 40-fold less of the HSV-2 allele was required to yield the same level of inhibition as HSV-1, indicating that it is significantly more potent. Examination of chimeric UL41 alleles containing various combinations of HSV-1 and HSV-2 sequences identified three regions of the 333 polypeptide which increase the activity of KOS when substituted for the corresponding amino acids of the KOS protein. These are separated by two regions which have no effect on KOS activity, even though they contain 43 of the 74 amino acid differences between the parental alleles. In addition, alleles encoding a full-length KOS polypeptide with a 32-amino-acid N-terminal extension retain considerable activity. The results begin to identify which amino acid differences are responsible for type-specific differences in Vhs activity.  相似文献   

7.
During lytic herpes simplex virus (HSV) infections, the HSV virion host shutoff protein (UL41) accelerates the turnover of host and viral mRNAs. Although the UL41 polypeptides from HSV type 1 (HSV-1) strain KOS and HSV-2 strain 333 are 87% identical, HSV-2 strains generally shut off the host more rapidly and completely than HSV-1 strains. In a previous study, we identified three regions of the HSV-2 UL41 polypeptide (amino acids 1 to 135, 208 to 243, and 365 to 492) that enhance the activity of KOS when substituted for the corresponding portions of the KOS protein (D. N. Everly, Jr., and G. S. Read, J. Virol. 71:7157-7166, 1997). These results have been extended through the analysis of more than 50 site-directed mutants of UL41 in which selected HSV-2 amino acids were introduced into an HSV-1 background and HSV-1 amino acids were introduced into the HSV-2 allele. The HSV-2 amino acids R22 and E25 were found to contribute dramatically to the greater activity of the HSV-2 allele, as did the HSV-2 amino acids A396 and S423. The substitution of six HSV-2 amino acids between residues 210 and 242 enhanced the HSV-1 activity to a lesser extent. In most cases, individual substitutions or the substitution of combinations of fewer than all six amino acids reduced the UL41 activity to less than that of KOS. The results pinpoint several type-specific amino acids that are largely responsible for the greater activity of the UL41 polypeptide of HSV-2. In addition, several spontaneous mutations that abolish detectable UL41 activity were identified.  相似文献   

8.
HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29) has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529) derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige) mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a prophylactic vaccine.  相似文献   

9.
The herpes simplex virus type 1 (HSV-1) gH-gL complex which is found in the virion envelope is essential for virus infectivity and is a major antigen for the host immune system. However, little is known about the precise role of gH-gL in virus entry, and attempts to demonstrate the immunologic or vaccine efficacy of gH and gL separately or as the gH-gL complex have not succeeded. We constructed a recombinant mammalian cell line (HL-7) which secretes a soluble gH-gL complex, consisting of gH truncated at amino acid 792 (gHt) and full-length gL. Purified gHt-gL reacted with gH- and gL-specific monoclonal antibodies, including LP11, which indicates that it retains its proper antigenic structure. Soluble forms of gD (gDt) block HSV infection by interacting with specific cellular receptors. Unlike soluble gD, gHt-gL did not block HSV-1 entry into cells, nor did it enhance the blocking capacity of gD. However, polyclonal antibodies to the complex did block entry even when added after virus attachment. In addition, these antibodies exhibited high titers of complement-independent neutralizing activity against HSV-1. These sera also cross-neutralized HSV-2, albeit at low titers, and cross-reacted with gH-2 present in extracts of HSV-2-infected cells. To test the potential for gHt-gL to function as a vaccine, BALB/c mice were immunized with the complex. As controls, other mice were immunized with gD purified from HSV-infected cells or were sham immunized. Sera from the gD- or gHt-gL-immunized mice exhibited high titers of virus neutralizing activity. Using a zosteriform model of infection, we challenged mice with HSV-1. All animals showed some evidence of infection at the site of virus challenge. Mice immunized with either gD or gHt-gL showed reduced primary lesions and exhibited no secondary zosteriform lesions. The sham-immunized control animals exhibited extensive secondary lesions. Furthermore, mice immunized with either gD or gHt-gL survived virus challenge, while many control animals died. These results suggest that gHt-gL is biologically active and may be a candidate for use as a subunit vaccine.  相似文献   

10.
Cells expressing herpes simplex virus (HSV) thymidine kinase (tk) are killed by ganciclovir (GCV). Adjacent cells without HSV-tk also die, a phenomenon known as the 'bystander effect'. However, there is no evidence that replication-competent HSV induces a bystander effect in the presence of GCV. Therefore, we investigated the bystander effect in HEp-2 cells infected with replication-competent, oncolytic HSV-1 mutants, hrR3 and HF10. In cells infected at a multiplicity of infection (MOI) of 3, GCV did not induce apoptosis. At low MOIs of 0.3 and 0.03, however, a number of adjacent, uninfected cells apoptosed following GCV treatment. Irrespective of GCV treatment, HEp-2 cells expressed minimal levels of connexin 43 (Cx43). However, Cx43 expression was enhanced by GCV in response to infection with HF10 at an MOI of 0.3, but not at an MOI of 3. Expression of other proteins involved in gap junctions, including Cx26 and Cx40, was not augmented under these conditions. The PKA and PI3K signal transduction pathways are likely involved in enhanced Cx43 expression as inhibitors of these pathways prevented Cx43 upregulation. These results suggest that infection with replication-competent HSV-1 induces the bystander effect in cells treated with GCV because of efficient intercellular transport of active GCV through abundant gap junctions.  相似文献   

11.
Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccines studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccines proliferated following stimulation with gD-2, whereas stimulation with gD-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.  相似文献   

12.
13.
Herpes simplex virus type 1 (HSV-1) infects a wide range of cells, including dendritic cells. Consequently, HSV-1 vectors may be capable of eliciting strong immune responses to vectored antigens. To test this hypothesis, an HSV-1 amplicon plasmid encoding human immunodeficiency virus type 1 gp120 was constructed, and murine immune responses to helper virus-free amplicon preparations derived from this construct were evaluated. Initial studies revealed that a single intramuscular (i.m.) injection of 10(6) infectious units (i.u.) of HSV:gp120 amplicon particles (HSV:gp120) elicited Env-specific cellular and humoral immune responses. A potent, CD8(+)-T-cell-mediated response to an H-2D(d)-restricted peptide from gp120 (RGPGRAFVTI) was measured by a gamma interferon ELISPOT and was confirmed by standard cytotoxic-T-lymphocyte assays. Immunoglobulin G enzyme-linked immunosorbent assay analysis showed the induction of a strong, Env-specific antibody response. An i.m. or an intradermal administration of HSV:gp120 at the tail base elicited a more potent cellular immune response than did an intraperitoneal (i.p.) inoculation, although an i.p. introduction generated a stronger humoral response. The immune response to HSV:gp120 was durable, with robust cellular and humoral responses persisting at 171 days after a single 10(6)-i.u. inoculation. The immune response to HSV:gp120 was also found to be dose dependent: as few as 10(4) i.u. elicited a strong T-cell response. Finally, HSV:gp120 elicited significant Env-specific cellular immune responses even in animals that had been previously infected with wild-type HSV-1. Taken together, these data strongly support the use of helper-free HSV-1 amplicon particles as vaccine delivery vectors.  相似文献   

14.
In order to characterize better the morphology and immune response in acute necrotizing HSV infection, murine HSV hepatitis was examined. BALB/c mice were inoculated intraperitoneally with 10(6) plaque-forming units (PFU) of HSV-1 (Lenette) and HSV-2 (D316). In both groups half the animals were pretreated with silica particles to block macrophage function. Up to 6 days after infection four mice from each group were sacrificed at daily intervals and the livers were examined by light and electron microscopy, immunohistology, in situ hybridization, combined immunohistology/in situ hybridization and titration of viral PFU. HSV-2 infected mice developed severe necrotizing hepatitis with persistence of HSV in the liver tissue until the end of the study. HSV-1 infected mice rapidly eliminated the virus and revealed only small necrotic foci. Early phase alterations and necrotic phase lesions were distinguished and characterized and morphologic evidence of a direct cytopathic effect of HSV was detected. A specific immune reaction in late stages appeared to be mediated by T4-positive T-lymphocytes. In situ hybridization and immunohistochemistry showed a close correlation with virus titration and were valuable in characterizing early phases and in the assessment of prognosis and differential diagnosis.  相似文献   

15.
The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical.  相似文献   

16.
17.
Soluble forms of herpes simplex virus (HSV) glycoprotein D (gD) block viral penetration. Likewise, most HSV strains are sensitive to gD-mediated interference by cells expressing gD. The mechanism of both forms of gD-mediated inhibition is thought to be at the receptor level. We analyzed the ability of different forms of soluble, truncated gD (gDt) to inhibit infection by different strains of HSV-1 and HSV-2. Strains that were resistant to gD-mediated interference were also resistant to inhibition by gDt, thereby suggesting a link between these two phenomena. Virion gD was the major viral determinant for resistance to inhibition by gDt. An insertion-deletion mutant, gD-1(delta 290-299t), had an enhanced inhibitory activity against most strains tested. The structure and function of gDt proteins derived from the inhibition-resistant viruses rid1 and ANG were analyzed. gD-1(ridlt) and gD-1(ANGt) had a potent inhibitory effect on plaque formation by wild-type strains of HSV but, surprisingly, little or no effect on their parental strains. As measured by quantitative enzyme-linked immunosorbent assay with a diverse panel of monoclonal antibodies, the antigenic structures of gD-1(rid1t) and gD-1(ANGt) were divergent from that of the wild type yet were similar to each other and to that of gD-1 (delta 290-299t). Thus, three different forms of gD have common antigenic changes that correlate with enhanced inhibitory activity against HSV. We conclude that inhibition of HSV infectivity by soluble gD is influenced by the antigenic conformation of the blocking gDt as well as the form of gD in the target virus.  相似文献   

18.
Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8+ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8+ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.  相似文献   

19.
Glycoprotein D (gD) is a structural component of the herpes simplex virus (HSV) envelope which is essential for virus entry into host cells. Chinese hamster ovary (CHO-K1) cells are one of the few cell types which are nonpermissive for the entry of many HSV strains. However, when these cells are transformed with the gene for the herpesvirus entry mediator (HVEM), the resulting cells, CHO-HVEM12, are permissive for many HSV strains, such as HSV-1(KOS). By virtue of its four cysteine-rich pseudorepeats, HVEM is a member of the tumor necrosis factor receptor superfamily of proteins. Recombinant forms of gD and HVEM, gD-1(306t) and HVEM(200t), respectively, were used to demonstrate a specific physical interaction between these two proteins. This interaction was dependent on native gD conformation but independent of its N-linked oligosaccharides, as expected from previous structure-function studies. Recombinant forms of gD derived from HSV-1(KOS)rid1 and HSV-1(ANG) did not bind to HVEM(200t), explaining the inability of these viruses to infect CHO-HVEM12 cells. A variant gD protein, gD-1(delta290-299t), showed enhanced binding to HVEM(200t) relative to the binding of gD-1(306t). Competition studies showed that gD-1(delta290-299t) and gD-1(306t) bound to the same region of HVEM(200t), suggesting that the differences in binding to HVEM are due to differences in affinity. These differences were also reflected in the ability of gD-1(delta290-299t) but not gD-1(306t) to block HSV type 1 infection of CHO-HVEM12 cells. By gel filtration chromatography, the complex between gD-1(delta290-299t) and HVEM(200t) had a molecular mass of 113 kDa and a molar ratio of 1:2. We conclude that HVEM interacts directly with gD, suggesting that HVEM is a receptor for virion gD and that the interaction between these proteins is a step in HSV entry into HVEM-expressing cells.  相似文献   

20.
In an earlier paper (Morse et al., J. Virol 24:231--248, 1977) we reported on the provenance of the DNA sequences in 26 herpes simplex virus type 1 (HSV-1) X HSV-2 recombinants as determined from analyses of their DNAs with at least five restriction endonucleases. This report deals with the polypeptides specified by the recombinants and by their HSV-1 and HSV-2 parents. We have identified (i) the corresponding HSV-1 and HSV-2 polypeptides with molecular weights ranging from 20,000 to more than 200,000, (ii) the polypeptides that undergo rapid post-translational processing, and (iii) polypeptides that vary intratypically in apparent molecular weight. By comparing the segregation patterns of the polypeptides with those of the DNA sequence of the recombinants, we have mapped the templates specifying 26 polypeptides and several viral functions on the physical map of HSV DNA. The data show the following: (i) alpha polypeptides map at the termini of the L and S components of the HSV DNA. Although alpha ICP 27 maps entirely within the reiterated region of the L component, the template for alpha ICP 4 may lie only in part within the reiterated sequences of the S component. Of note is the finding that cells infected with a recombinant that contains both HSV-1 and HSV-2 DNA sequences in the S component produced alpha ICP 4 of both HSV-1 and HSV-2. (ii) Templates specifying beta and gamma polypeptides map in the L component and appear to be randomly distributed. (iii) Thymidine kinase and resistance to phosphonoacetic acid mapped in the L component. In addition, we have taken advantage of the rapid inhibition of host protein synthesis characteristic of HSV-2 infections and syncytial plaque morphology to also map the template(s) responsible for these functions in the L component. The implications of the template arrangement in HSV DNA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号