首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroquine has been the mainstay of antimalarial chemotherapy but the rapid spread of resistance to this important drug has now compromised its efficacy. The mechanism of chloroquine resistance has not been known but recent evidence from Plasmodium falciparum, the causative agent of the most severe form of human malaria, suggested similarities to the multidrug resistance phenotype (MDR) of mammalian tumour cells which is mediated by a protein molecule termed P-glycoprotein. Two mdr genes (pfmdr1 and pfmdr2) encoding P-glycoprotein homologues have been identified in P. falciparum and one of these (pfmdr1) has several alleles that have been linked to the chloroquine resistance phenotype. In contrast analysis of a genetic cross between chloroquine-resistant and -sensitive P. falciparum has suggested that the genes encoding the known P-glycoprotein homologues are not linked. This review outlines the similarities of the chloroquine resistance phenotype with the MDR phenotype of mammalian tumour cells and explores the possible role of the pfmdr genes.  相似文献   

2.
During the 20th century our understanding of genetics and the processes of gene expression have undergone revolutionary change. Improved technology has identified the components of the living cell, and knowledge of the genetic code allows us to visualize the pathway from genotype to phenotype. We can now sequence entire genes, and improved cloning techniques enable us to transfer genes between organisms, giving a better understanding of their function. Due to the improved power of analytical tools databases of sequence information are growing at an exponential rate. Soon complete sequences of genomes and the three-dimensional structure of all proteins may be known. The question we face in the new millennium is how to apply this data in a meaningful way. Since the genes carry the specification of an organism, and because they also record evolutionary changes, we need to design a theoretical framework that can take account of the flow of information through biological systems.  相似文献   

3.
Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating phenotype (and vice versa) depends on the local cell density. The model consists of two reaction-diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a combination of numerical and analytical techniques to characterize the development of spatio-temporal instabilities and travelling wave solutions generated by our model. We demonstrate that the density-dependent go-or-grow mechanism can produce complex dynamics similar to those associated with tumour heterogeneity and invasion.  相似文献   

4.
The nuclei of the cells of most solid tumours in histopathologic preparations vary in size, shape and chromatin pattern, both from normal nuclei and from each other. These features have not been explained in terms of conventional concepts of nuclear structure and theories of carcinogenesis. In recent years, the unfolded chromosomes have been shown to occupy "domains" in the nucleus during interphase, providing a relatively uniform density of fine chromatin fibres throughout the nucleus in the living state. This is in contrast to the appearances of interphase chromatin existing as coarse clumps and fibres (heterochromatin and euchromatin respectively) as are seen in histologic preparations. Additionally, the binding of chromatin to nuclear membrane, the possible existence of a nuclear matrix, the functions of nuclear pores, and the attachments of cytoskeletal structures to the outer nuclear membrane are now recognised. Studies of genetic instability of cancer cells (many random mutations are present in the genome, which vary from nucleus-to-nucleus in individual tumours) have shown that this phenomenon occurs early in tumour formation, can be present in morphologically-normal cells adjacent to tumours, and can result in thousands of genomic events per tumour cell. These observations form the basis for the mutator phenotype/clonal selection theory of carcinogenesis, which proposes that genetic instability is an essential early part of carcinogenesis. Genetic instability has been used to explain significant cell-to-cell variability of behaviour (tumour cell heterogeneity) among cells of individual tumours. This paper proposes that a high incidence of nucleus-to-nucleus-variable mutation of the genes for factors controlling nuclear morphology in tumours can explain nucleus-to-nucleus variations of histopathologic appearance of these nuclei when some additional effects of histological processing are taken into account.  相似文献   

5.
6.
Malignant mesothelioma is a tumour originating from mesothelial cells, and it exhibits epithelial, fibrous, or biphasic differentiation. This tumour is highly resistant to therapy, and presence of a sarcomatous growth pattern has been associated with worse prognosis. A mesothelioma cell line with retained ability to differentiate into either epithelial or fibroblast-like phenotype was subjected to subtractive hybridisation in order to identify the genes coupled to tumour cell differentiation. Nine genes were found to be selectively overexpressed in the epithelial sub-line, compared to only two genes in the fibroblast-like phenotype. This may support the idea that the sarcomatous phenotype represents a less differentiated tumour. One of the genes that is differentially expressed by the epithelial cells was thioredoxin, a small redox-active protein associated with cell-growth and differentiation. This overexpression was accompanied by increased protein levels both intracellularly and in the medium. Thioredoxin is reduced by the selenoprotein thioredoxin reductase and NADPH. The activity of this enzyme was high in both cell sub-lines but induced 2-fold in the epithelially-differentiated cells. Overexpression of thioredoxin might be a factor behind the poor prognosis and reduced responsiveness to therapy of mesotheliomas. Epithelial differentiation in this cell line has previously been linked to increased synthesis of heparan sulphate proteoglycans. The possible formation of complexes including thioredoxin, thioredoxin reductase, and heparan sulphate proteoglycans might play a role in the local control of cell growth and differentiation.  相似文献   

7.
Gadd45 mutations are uncommon in human tumour cell lines   总被引:1,自引:0,他引:1  
GADD45 is an evolutionarily conserved gene that encodes a small acidic, nuclear protein and is an example of a p53 responsive gene. Gadd45 protein has been shown to interact with PCNA and also p21waf1. It has been implicated in growth arrest, DNA repair, chromatin structure and signal transduction. The confusing biochemical data has been clarified by the demonstration that Gadd45 null mice have a phenotype strikingly similar to that of p53 null mice, being tumour prone and showing marked genomic instability. We have tested the hypothesis that mutations in the GADD45 coding region might substitute for p53 abnormalities in tumour cell lines where p53 is wild type. After generating cDNA from mRNA in a panel of 24 cell lines we sequenced the GADD45 cDNA and have demonstrated that no mutations can be observed, even in the p53 wild type cell lines. Such data suggest that Gadd45 mutations are uncommon in human cancer. From this we postulate that, despite the phenotype of the GADD45 null mouse, GADD45 is unlikely to be the key mechanistic determinant of the tumour suppressor activity of the p53 pathway.
Note on nomenclature: We have employed GADD45 to designate the gene and Gadd45 to designate the encoded protein. This gene has also be denoted GADD45 α elsewhere in the literature.  相似文献   

8.
Advances in analytical techniques, specifically in mass spectrometry, have allowed for both facile protein identification and routine sequencing of proteins at increased sensitivity levels. Protein modifications present additional challenges because they occur at low stoichiometries and often change the analytical behavior of the molecule. For example, characterization of protein phosphorylation provides crucial information to signaling processes that are often associated with disease. Research into protein phosphorylation requires inter-disciplinary co-operation involving multiple investigators with expertise in diverse scientific fields. As such, techniques must be simple, effective, and incorporate multiple checkpoints that confirm the sample contains a phosphorylated protein in order to ensure resources are conserved. In this study, tumor progression locus 2 (Tpl2), which has been implicated in cell cycle regulation and has been shown to play a significant role in critical signal transduction pathways, was transfected into 293T cells, overexpressed and isolated from the cell lysate. Isolated proteins were separated via 1D gel electrophoresis, and their phosphorylation was confirmed using phosphospecific staining. The bands were excised and subjected to tryptic digestion and immobilized metal affinity chromatography (IMAC) prior to analysis by capillary-LC-MS/MS. Three phosphorylation sites were detected on Tpl2. One site had previously been reported in the literature but had not been characterized by mass spectrometric methods until this time; two additional novel sites of phosphorylation were detected.  相似文献   

9.
10.
The importance of glycosylation in biological events and the role it plays in glycoprotein function and structure is an area in which there is growing interest. In order to understand how glycosylation affects the shape or function of a protein it is however important to have suitable techniques available to obtain structural information on the oligosaccharides attached to the protein. For many years the complexity of the structures required sophisticated analytical techniques only available to a few specialist laboratories. In many cases these techniques were not available or required a large amount of material and therefore the number of glycoproteins which were fully characterised were relatively few. In recent years there have been substantial developments in the analysis of glycosylation which has significantly changed the capability to fully characterise molecules of biological interest. A number of different techniques are available which differ in terms of their complexity, the amount of information which is available from them, the skill needed to perform them and their cost. It is now possible for many laboratories who do not specialise in glycosylation analysis to obtain some information although this may be incomplete. These developments do, however, also make complete characterisation of a glycoprotein a much less daunting task and in many cases this can be performed more easily and with less starting material than was previously required. In this review a summary will be given of current techniques and their suitability for different types of analysis will be considered.  相似文献   

11.
Analysis of phosphorylated proteins and peptides by mass spectrometry   总被引:7,自引:0,他引:7  
Phosphorylation on serine, threonine and tyrosine residues is an extremely important modulator of protein function. Therefore, there is a great need for methods capable of accurately elucidating sites of phosphorylation. Although full characterization of phosphoproteins remains a formidable analytical challenge, mass spectrometry has emerged as an increasingly viable tool for this task. This review summarizes the methodologies currently available for the analysis of phosphoproteins by mass spectrometry, including enrichment of compounds of interest using immobilized metal affinity chromatography and chemical tagging techniques, detection of phosphopeptides using mass mapping and precursor ion scans, localization of phosphorylation sites by peptide sequencing, and quantitation of phosphorylation by the introduction of mass tags. Despite the variety of powerful analytical methods that are now available, complete characterization of the phosphorylation state of a protein isolated in small quantities from a biological sample remains far from routine.  相似文献   

12.
Epstein-Barr virus (EBV) is a potent mitogenic and antiapoptotic agent for B lymphocytes and is associated with several different types of human tumour. The abundantly expressed small viral RNA, EBER-1, binds to the growth inhibitory and pro-apoptotic protein kinase R (PKR) and blocks activation of the latter by double-stranded RNA. Recent evidence has suggested that expression of EBER-1 alone in EBV-negative B cells promotes a tumorigenic phenotype and that this may be related to inhibition of the pro-apoptotic effects of PKR. The ribosomal protein L22 binds to EBER-1 in virus-infected cells, but the significance of this has not previously been established. We report here that L22 and PKR compete for a common binding site on EBER-1. As a result of this competition, L22 interferes with the ability of the small RNA to inhibit the activation of PKR by dsRNA. Transient expression of EBER-1 in murine embryonic fibroblasts stimulates reporter gene expression and partially reverses the inhibitory effect of PKR. However, EBER-1 is also stimulatory when transfected into PKR knockout cells, suggesting an additional, PKR-independent, mode of action of the small RNA. Expression of L22 prevents both the PKR-dependent and -independent effects of EBER-1 in vivo. These results suggest that the association of L22 with EBER-1 in EBV-infected cells can attenuate the biological effects of the viral RNA. Such effects include both the inhibition of PKR and additional mechanism(s) by which EBER-1 stimulates gene expression.  相似文献   

13.
Protein kinase CK2: a new view of an old molecular complex   总被引:7,自引:0,他引:7  
Protein kinase CK2 (formerly known as casein kinase II) has been viewed traditionally as a stable heterotetrameric complex, but new analytical techniques are bringing a different picture into focus. The transient nature of this complex has been highlighted by the elucidation of its structure. Furthermore, analysis of the spatiotemporal organization of individual CK2 subunits in living cells has shown that they are dynamic and that they integrate into different multimolecular assemblies. These new studies give an additional dimension to the challenge of determining the cellular regulation of this protein kinase.  相似文献   

14.
Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food‐web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food‐web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.  相似文献   

15.
The objective of gene therapy for the treatment of cancer is to kill tumour cells but preserve normal tissue; therefore, the ideal gene therapy agent would be targeted for specific transduction of tumour cells and have specificity in its cytotoxic action. A variety of strategies to achieve these aims have demonstrated promising results in the laboratory, including enzyme-pro-drug activating systems, correction of genetic mutations contributing to the malignant phenotype and stimulation of a T-cell-mediated anti-tumour immune response. The key to the success of all these strategies is an effective vector that can direct appropriate expression of the therapeutic gene. Viruses have many properties that can be adapted to achieve this therapeutic endpoint; furthermore, they can be engineered to replicate selectively in cancer cells and lyse them. The challenge now is to translate these features into effective therapies that can supplement or supplant existing treatments.  相似文献   

16.
The required performance of an analytical method depends on the purpose for which it will be used. As a methodology matures, it may find new application, and the performance demands placed on the method can increase. Sedimentation velocity analytical ultracentrifugation (SV-AUC) has a long and distinguished history with important contributions to molecular biology. Now the technique is transitioning into industrial settings, and among them, SV-AUC is now used to quantify the amount of protein aggregation in biopharmaceutical protein products, often at levels less than 1% of the total protein mass. In this paper, we review recent advances to SV methodology which have been shown to improve quantitation of protein aggregation. Then we discuss the performance of the SV method in its current state, with emphasis on the precision and quantitation limit of the method, in the context of existing industrial guidance on analytical method performance targets for quantitative methods.  相似文献   

17.
Lung cancer is one of the most common fatal diseases in the developed world. The disease is rarely cured by currently available therapies, with an overall survival rate of ~10%. Characterizing novel proteins that offer crucial insights into the processes of lung tumour invasion and metastasis may therefore provide much-needed prognostic markers, and influence therapeutic strategies. Aberrant function of the integrin family of heterodimeric cell surface receptors is a common theme in cancer--investigation into novel integrin activity regulators may offer crucial insights into the processes of tumour invasion and metastasis and may reveal insights into potential therapeutic targets. We previously described that depletion of the novel multi-transmembrane domain protein Fam38A, located at the endoplasmic reticulum (ER), inactivates endogenous beta1 integrin affinity, reducing cell adhesion. We now show that depletion of Fam38A, also now known as Piezo1, causes anchorage independence and a switch to a reduced integrin-dependent mode of cell migration/invasion, a novel phenotype for this integrin-regulating protein. Normal lung epithelial cells show increased rates of migration by 2D time-lapse microscopy and increased capacity to invade into matrigel, despite having decreased integrin affinity. We confirm greatly depleted Fam38A expression in small cell lung cancer (SCLC) lines where a form of reduced integrin-dependent migration, i.e. amoeboid migration, is a known phenotype. We propose that loss of Fam38A expression may cause increased cell migration and metastasis in lung tumours.  相似文献   

18.
Cell surface, urokinase (u-PA)-mediated, plasminogen activation has recently been recognised as a process integral to extracellular matrix degradation. The primary inhibitor of u-PA activity in the extracellular matrix is plasminogen activator inhibitor type 2 (PAI-2), a serine protease inhibitor. The malignant metastatic phenotype is associated with excessive and uncontrolled, tumour cell-associated, u-PA-mediated, extracellular matrix degradation. Inhibition of the malignant metastatic phenotype via induction of PAI-2 expression and/or inhibition of u-PA expression may represent a novel means via which the metastatic phenotype can be arrested. Agents capable of inducing PAI-2 and/or inhibiting u-PA activity may restrict u-PA-mediated tumour cell proteolysis and facilitate in the development of therapeutic strategies to combat malignant disease. We have identified the hydroxamic acid derivative oxamflatin, previously noted to revert the malignant phenotype in K-ras-transformed NIH-3T3 cells, as capable of upregulating PAI-2 and simultaneously suppressing u-PA expression in two different cell systems. In addition, zymographic analysis indicated that oxamflatin treatment results in a significant reduction in u-PA proteolytic activity in both HT-1080 fibrosarcoma and U-937 histiocytic lymphoma cells. We postulate that oxamflatin represents a novel means by which induction of PAI-2 and concomitant inhibition of u-PA gene and protein expression can be achieved and may be of benefit in inhibiting the malignant metastatic phenotype.  相似文献   

19.
20.
High throughput approaches to facilitate the development of chromatographic separations have now been adopted widely in the biopharmaceutical industry, but issues of how to reduce the associated analytical burden remain. For example, acquiring experimental data by high level factorial designs in 96 well plates can place a considerable strain upon assay capabilities, generating a bottleneck that limits significantly the speed of process characterization. This article proposes an approach designed to counter this challenge; Strategic Assay Deployment (SAD). In SAD, a set of available analytical methods is investigated to determine which set of techniques is the most appropriate to use and how best to deploy these to reduce the consumption of analytical resources while still enabling accurate and complete process characterization. The approach is demonstrated by investigating how salt concentration and pH affect the binding of green fluorescent protein from Escherichia coli homogenate to an anion exchange resin presented in a 96‐well filter plate format. Compared with the deployment of routinely used analytical methods alone, the application of SAD reduced both the total assay time and total assay material consumption by at least 40% and 5%, respectively. SAD has significant utility in accelerating bioprocess development activities. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号