首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
种子顽拗性:最新评价   总被引:10,自引:0,他引:10  
根据种子的脱水行为,可以把种子分为正常性、顽拗性和中间性种子三种类型。种子脱水耐性和脱水敏感性的鉴定是制定种子的贮藏策略和物种基因资源长期保存的依据。除了物种的内在特性外,种子的发育状态、脱水速率、脱水时和重新水合时的环境是影响种子脱水耐性的重要因子。种子的存活率、电解质渗漏速率和存活种子的萌发生长速率是衡量种子脱水耐性的良好的综合参数。种子的脱水耐性是一种数量性状,用“临界含水量”的概念来判断是不正确的,且在评价种子顽拗性中引起了一些混乱。本文还提出了一种全新的评价种子顽拗性的工作模式。  相似文献   

2.
植物顽拗性种子研究进展   总被引:2,自引:1,他引:1  
对植物顽拗性种子的概念、物种分类、形态、分布及一些生理生态特征进行了综述,分析了顽拗性种子脱水敏感性的原因和对环境的生态适应性,探讨其可能的进化地位和贮存技术。同时,对顽拗性种子研究的发展趋势和应用前景进行了展望,即加强生境调查,更新顽拗性种子植物数据库,从形态学、生理生态学和分子生物学分析种子顽拗性本质。  相似文献   

3.
根据种子的脱水行为,可以把种子分为正常性、顽拗性和中间性种子三种类型.种子脱水耐性和脱水敏感性的鉴定是制定种子的贮藏策略和物种基因资源长期保存的依据.除了物种的内在特性外,种子的发育状态、脱水速率、脱水时和重新水合时的环境是影响种子脱水耐性的重要因子.种子的存活率、电解质渗漏速率和存活种子的萌发生长速率是衡量种子脱水耐性的良好的综合参数.种子的脱水耐性是一种数量性状,用"临界含水量"的概念来判断是不正确的,且在评价种子顽拗性中引起了一些混乱.本文还提出了一种全新的评价种子顽拗性的工作模式.  相似文献   

4.
顽拗性种子   总被引:33,自引:1,他引:32  
本文讨论了顽拗性种子的基本特性,在劣变中的生理生化变化,脱水敏感性的细胞生物学基础,以及贮藏顽拗性种子的必要性和可能性。  相似文献   

5.
低温保存技术在顽拗性种子种质保存中的利用   总被引:3,自引:0,他引:3  
唐安军  龙春林 《广西植物》2007,27(5):759-764
由于顽拗性种子不耐脱水且对低温敏感,常规保存方法难以达到长期保存的目的。因此,(超)低温保存顽拗性种子种质是最理想的方法。顽拗性种子的低温保存,应用较多的是玻璃化法和两步法。诸多因素影响着低温保存的成败,如种子或胚的含水量水平、溶液低温保护剂效应、降温冰冻与解冻方式、水合过程以及后培养等,这些需深入探索与解决。除顽拗性种子脱水耐性和低温敏感性机理外,植物细胞的冻害和抗冻机理也亟需探明,以便找到最佳冷冻方法,制定长期保存种质基因的最佳方案。  相似文献   

6.
试论种子顽拗性的复合数量性状特征   总被引:1,自引:0,他引:1  
文章简要概述了从顽拗型种子到顽拗性种子这样一个对顽拗性种子认识提高的过程,在综述了前人关于顽拗性种子数量性状特征论述的基础上,把种子顽拗性的数量性状特征划分为种间、种内和个体发育三个层面,提出种子顽拗性是一种复合性状,其核心至少包括脱水耐性、低温耐性和贮藏耐性三方面的内容,其伴随性状包括种子尺度、千粒重、初始含水量、休眠特性、分类地位、地理分布和保护性物质含量等多方面的内容,而且这些核心内容和伴随性状的每一个方面都具有渐变的、过渡的、数量型的特征,从而阐明种子顽拗性是一种复合数量性状.种子顽拗性的复合数量性状特征的提出及其三个层面的划分,有助于加深对种子顽拗性的认识,并用以指导我们在实践中解决种子顽拗性方面的具体问题.  相似文献   

7.
黄皮种子发育晚期,胚内核酸、蛋白质合成能力增强,而花生胚的核酸、蛋白质合成能力在发育晚期则呈下降趋势。黄皮胚的发育在达到生理成熟后维持着活跃的生理代谢并转入萌发状态;而花生胚的代谢活性逐步降低并转入生理静止状态。脱水处理引起生理成熟期黄皮胚核酸、蛋白质合成能力急剧下降,核酸水解酶活性增强。不同程度脱水的黄皮胚吸胀24h,核酸、蛋白质的合成能力随脱水程度的加深而降低;生物大分子代谢能力的变化是顽拗性  相似文献   

8.
黄皮种子脱水敏感性与萌发事件的研究   总被引:1,自引:0,他引:1  
黄皮种子对脱水非常敏感,含水量从51%下降至22.4%,种子的发芽率和发芽指数为零,是典型的顽拗性种子。自然脱水时,种子中可溶性糖的含量增加,淀粉的含量下降;磷酸化酶,异柠檬酸裂解酶以及旺轴中α—和β—淀粉酶的活性先增加然后下降;子叶中α—和β—淀粉酶的活性呈下降趋势。这些变化类似于吸水萌发的黄皮和豌豆种子。可以认为黄皮种子脱水敏感性的原因是在脱落时萌发。随着萌发过程的进行,水分成为限制因子,使种子生活力丧失。  相似文献   

9.
顽拗型种子的生物学特性及种子顽拗性的进化   总被引:16,自引:0,他引:16  
综述了顽拗型种子的形态、大小、含水量、植物分类、植物生态方面的一般特性,分析了顽拗型种子对环境的生态适应性,并讨论了种子顽拗性的可能进化模式,进而指出顽拗型种子生理生态学研究的意义和应用前景.顽拗型种子一般千粒重和体积较大,含水量较高,萌发迅速且多无休眠特性;产生顽拗性种子的植物分布很广,与其系统分类地位无关,但多起源于湿润的生境;目前尚无足够的证据表明种子顽拗性是原始性状或是衍生性状,要解决这一问题还需更深入的研究,尤其是种子生理学和生态学家的合作研究.  相似文献   

10.
以正常性种子花生为对照,研究了顽拗性黄皮种子脱水过程中活性氧清除酶、膜脂过氧化作用以及电解质渗漏率的变化。随着含水量的下降,黄皮胚的电解质渗漏率和膜脂过氧化产物丙二醛(MDA)含量均显著增加;当黄皮胚含水量下降致40%后,SOD活性开始急剧下降,而POD和CAT活性在胚含水量下降过程中呈现出缓慢下降的趋势。花生胚在含水量从45%降至145的过程中,电解质渗漏率没有明显增加,MDA含量只有少量增加;当含水量降至14%后,电解质渗漏率出现少量增加,花生胚脱水初期,活性氧清除酶活怀明显增加,并在整个脱水过程中维持较高的水平。以上结果表明:顽拗性处子黄皮的脱水敏感性与活性氧清除酶相对活性变化有关。脱水引起黄皮胚活性氧清除酶活性降低,活性氧清除能力下降,膜脂过氧化作用加强,膜透性增大。黄皮胚的膜系统可能是脱水伤害的靶位之一。  相似文献   

11.
From Avicennia to Zizania: seed recalcitrance in perspective   总被引:4,自引:0,他引:4  
BACKGROUND: Considered only in terms of tolerance of, or sensitivity to, desiccation (which is an oversimplification), orthodox seeds are those which tolerate dehydration and are storable in this condition, while highly recalcitrant seeds are damaged by loss of only a small proportion of water and are unstorable for practical purposes. Between these extremes, however, there may be a gradation of the responses to dehydration--and also to other factors--suggesting perhaps that seed behaviour might be best considered as constituting a continuum subtended by extreme orthodoxy and the highest degree of recalcitrance. As the characteristics of seeds of an increasing number of species are elucidated, non-orthodox seed behaviour is emerging as considerably more commonplace--and its basis far more complex--than previously suspected. SCOPE: Whatever the post-harvest responses of seeds of individual species may be, they are the outcome of the properties of pre-shedding development, and a full understanding of the subtleties of various degrees of non-orthodox behaviour must await the identification of, and interaction among, all the factors conferring extreme orthodoxy. Appreciation of the phenomenon of recalcitrance is confounded by intra- and interseasonal variability across species, as well as within individual species. However, recent evidence suggests that provenance is a pivotal factor in determining the degree of recalcitrant behaviour exhibited by seeds of individual species. Non-orthodox--and, in particular, recalcitrant--seed behaviour is not merely a matter of desiccation sensitivity: the primary basis is that the seeds are actively metabolic when they are shed, in contrast to orthodox types which are quiescent. This affects all aspects of the handling and storage of recalcitrant seeds. In the short to medium term, recalcitrant seeds should be stored in as hydrated a condition as when they are shed, and at the lowest temperature not diminishing vigour or viability. Such hydrated storage has attendant problems of fungal proliferation which, unless minimized, will inevitably and significantly affect seed quality. The life span of seeds in hydrated storage even under the best conditions is variable among species, but is curtailed (days to months), and various approaches attempting to extend non-orthodox seed longevity are discussed. Conservation of the genetic resources by means other than seed storage is then briefly considered, with detail on the potential for, and difficulties with, cryostorage highlighted. CONCLUSIONS: There appears to be little taxonomic relationship among species exhibiting the phenomenon of seed recalcitrance, suggesting that it is a derived trait, with tolerance having been lost a number of times. Although recalcitrant seededness is best represented in the mesic tropics, particularly among rainforest climax species, it does occur in cooler, drier and markedly seasonal habitats. The selective advantages of the trait are considered.  相似文献   

12.

Vateria indica L. is a critically endangered tree species in South-Western Ghats of India, commercially exploited for its valuable resins. Seed recalcitrance is a major problem hindering the natural regeneration of this species and it poses a great challenge in seed storage and conservation. There was a continuous import of water from the maternal tissues to seed tissues till maturity and the seeds were released in a fully hydrated state. Differential accumulation of water has been noticed in the cotyledons and embryonal axis. There was a positive correlation between seed moisture content and rate of germination which is a character of recalcitrant seeds. The critical moisture content was found to be 40% in the axis and 23.5% in the cotyledons, below which the embryo will not germinate. Loss of germination ability as a result of desiccation was attributed to the cell membrane damage, expressed as the electrolyte leakage exceeding 0.79 μS/cm. ABA peaked in the mid embryogenesis, then dropped drastically and maintained a lower level till seed maturity. On desiccation, ABA started to increase but gradually dropped down. Both cotyledons and embryonal axis had differential ABA content but exhibited a general pattern of ABA level during embryogeny. Due to the thin seed coat/embryo ratio and low investment in the seed coat, this recalcitrant seed could not hold water as efficient as orthodox seeds. Thus, it germinated as soon as it was shed from the mother plant. On desiccation, ABA shot up and moisture content decreased along with electrolyte leakage and cell membrane damage. All these hindered germination of the seed. Thus, we can see a clear interplay between moisture content and ABA levels during embryogeny and desiccation. Since the seed biology of this species has not been well documented, the present work is mainly intended to study the dynamics of water and ABA during embryogeny and embryo drying. This study can surely contribute to the long-term storage and conservation of recalcitrant seeds which is a less explored area.

  相似文献   

13.
An Intermediate Category of Seed Storage Behaviour?: I. COFFEE   总被引:15,自引:3,他引:12  
Seeds of four cultivars of arabica coffee (Coffea arabica L.)were tested for germination following hermetic storage for upto 12 months at several different combinations of temperaturesbetween –20 °C and 15 °C and moisture contentsbetween 5% and 10% (wet basis). Most of the seeds from one cultivarwithstood desiccation to between 5% and 6% moisture content,a seed water potential of approximately –250 MPa, butthose of the remaining three cultivars were much more sensitiveto desiccation damage. Moreover, in all four cultivars, seedlongevity at cool and sub-zero temperatures, and at low moisturecontents did not conform with orthodox seed storage behaviour:viability was lost more rapidly under these conditions thanat either warmer temperatures or higher moisture contents. Theresults confirm that coffee seeds fail to satisfy the definitionsof either typical orthodox or recalcitrant seed storage behaviour.These results, therefore, point to the possibility of a thirdcategory of storage behaviour intermediate between those oforthodox and recalcitrant seeds. One of the main features ofthis category is that dry seeds are injured by low temperatures. Key words: coffee, Coffea arabica L., seed storage, seed longevity, desiccation, temperature  相似文献   

14.
In most species, arrest of growth and a decrease in water content occur in seeds and pollen before they are dispersed. However, in a few cases, pollen and seeds may continue to develop (germinate). Examples are cleistogamy and vivipary. In all other cases, seeds and pollen are dispersed with a variable water content (2-70%), and consequently they respond differently to environmental relative humidity that affects dispersal and maintenance of viability in time. Seeds with low moisture content shed by the parent plant after maturation drying can generally desiccate further to moisture contents in the range of 1-5% without damage and have been termed 'orthodox'. Pollen that can withstand dehydration also was recently termed orthodox. Seeds and pollen that do not undergo maturation drying and are shed at relatively high moisture contents (30-70%) are termed 'recalcitrant'. Since recalcitrant seeds and pollen are highly susceptible to desiccation damage, they cannot be stored under conditions suitable for orthodox seeds and pollen. Hence, there are four types of plants with regard to tolerance of pollen and seeds to desiccation. Orthodoxy allows for dispersal over greater distances, longer survival, and greater resistance to low relative humidity. The advantage of recalcitrance is fast germination. Orthodoxy and recalcitrance are often related to environment rather than to systematics. It has been postulated that certain types of genes are involved during presentation and dispersal of pollen and seeds, since molecules (sucrose, polyalcohols, late embryogenic abundant proteins, antioxidants, etc.) that protect different cell compartments during biologically programmed drying have been detected in both.  相似文献   

15.
16.
The dormancy breaking and storage behavior of Garcinia cowa Roxb. seeds were investigated.The seeds of G. cowa had 8-11 months dormancy in their natural habitat. Seeds were matured and dispersed at the end of the rainy season (mid-late August to late September) and were scatter-hoarded by rodents as food for winter after the seeds had fallen to the ground. Seedlings often emerged in the forest during the rainy season (May to August) the following year. Intact seeds of G. cowa failed to germinate after being sown at 30 ℃ for 120 d and the mean germination time (MGT) of seeds cultured in a shade (50% sunlight)nursery was 252 d. The most effective method of breaking dormancy was to remove the seed coat totally,which reduced the MGT to 13 d at 30 ℃. Germination was also promoted by partial removal of the seed coat (excising the hilum and exposing the radicle) and chemical scarification (immersion in 1% H2O2 for 1 d).Unscarified seeds take up water rapidly in the first 96 h, but water was absorbed by the outside seed coat,without penetrating through it. The moisture content (MC) of G. cowa seeds was high (50% in fresh weight)at shedding. The seeds could tolerate desiccation to some extent, until the MC reached approximately 40%;below that, the viability decreases rapidly and all seeds died at approximately 17% of MC. Seed viability decreased rapidly when seeds were chilled at 4 ℃; germination was 2% after storage for 1 week. Even stored at 10 ℃, seeds began to be damaged after 4 weeks. Seed storage for 1 yr revealed that in both dry (relative humidity (35 ± 5)%) and moist (wet sand) storage conditions, seed viability declined, but germination percentages for seeds stored under moist conditions are better than for seed stored under dry conditions.Because of their low tolerance to desiccation, marked chilling sensitivity and relatively short lifespan, G.cowa seeds should be classified into the tropical recalcitrant category. The ecological implications of dormant recalcitrant seeds and cues on storing recalcitrant seeds were discussed.  相似文献   

17.
Life strategy of plants depends on successful seed germination in the available environment, and sufficient soil water is the most important external factor. Taking into account a broad spectrum of roles played by water in seed viability and its maintenance during germination, the review embraces early germination events in seeds different in their water status. Two seed types are compared, namely orthodox and recalcitrant seeds, in terms of water content in the embryonic axes, vacuole biogenesis, and participation of water channels in membrane water transport. Mature orthodox seeds desiccate to low water content and remain viable during storage, whereas mature recalcitrant seeds are shed while well hydrated but die during desiccation and cannot be stored. In orthodox Vicia faba minor air-dry seeds remaining viable at 8–10% water content in embryonic axes, the vacuoles in hypocotyl are preserved as protein storage vacuoles, then restored to vacuoles in imbibing seeds in the course of protein mobilization. However, in newly produced meristematic root cells, the vacuoles are formed de novo from provacuoles. In recalcitrant Aesculus hippocastanum seeds, embryonic axes have a water content of 63–64% at shedding and they lack protein storage vacuoles but preserve vacuoles preformed in maturing seeds. Independent of the vacuolar biogenetic patterns, their further trend is similar; they expand and fuse, thus producing an osmotic compartment, which precedes and becomes an obligatory step for the initiation of cell elongation. Prior to this, water moves in imbibing seeds through the membranes by diffusion, although the aquaporins forming water channels are present. In both seed types, water channels are opened and actively participate in water transport only after growth initiation. Aquaporin gene expression and their composition change in broad bean embryonic axes after growth initiation. This is the way how a mass water flow into growing seedling cells is achieved, independent of differences in seed water content and vacuole biogenesis patterns.  相似文献   

18.
成熟脱水对种子发育和萌发的作用   总被引:9,自引:2,他引:7  
成熟脱水是正常性种子发育的末端事件。种子在成熟时胚的脱水耐性增加;当种子萌发时胚变得不耐脱水。当种子获得脱水耐性时,糖、蛋白质和抗氧化防御系统等保护性物质积累;当脱水耐性丧失时,这些物质被降解。成熟脱水是种子从发育过程向萌发过程转变的“开关”,它降低发育的蛋白质和mRNA的合成,终止发育事件和促进萌发事件。顽拗性种子不经历成熟脱水的发育阶段,对脱水高度敏感。  相似文献   

19.
Desiccation experiments have shown the oil palm seed to be orthodox,not recalcitrant, in character. There is a significant differencein water content between the whole seed and the embryo whichis maintained despite desiccation, and results in the failureof sub-zero storage of whole seeds. The successful recoveryof viable, excised embryos from liquid nitrogen, and their subsequentregrowth in vitro, suggests a practical technique for the longterm conservation of the genetic resources of the species. Elaesis guinensis L, oil palm embryo, cryopreservation, recalcitrant seed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号