首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Degradation of halogenated aliphatic compounds: The role of adaptation   总被引:1,自引:0,他引:1  
Abstract: A limited number of halogenated aliphatic compounds can serve as a growth substrate for aerobic microorganisms. Such cultures have (specifically) developed a variety of enzyme systems to degrade these compounds. Dehalogenations are of critical importance. Various heavily chlorinated compounds are not easily biodegraded, although there are no obvious biochemical or thermodynamic reasons why microorganisms should not be able to grow with any halogenated compound. The very diversity of catabolic enzymes present in cultures that degrade halogenated aliphatics and the occurrence of molecular mechanisms for genetic adaptation serve as good starting points for the evolution of catabolic pathways for compounds that are currently still resistant to biodegradation.  相似文献   

2.
Catabolic transposons   总被引:25,自引:0,他引:25  
The structure and function of transposable elements that code for catabolic pathways involved in the biodegradation of organic compounds are reviewed. Seven of these catabolic transposons have structural features that place them in the Class I (composite) or Class II (Tn3-family) bacterial elements. One is a conjugative transposon. Another three have been found to have properties of transposable elements but have not been characterized sufficiently to assign to a known class. Structural features of the toluene (Tn4651/Tn4653) and naphthalene (Tn4655) elements that illustrate the enormous potential for acquisition, deletion and rearrangement of DNA within catabolic transposons are discussed. The recently characterized chlorobenzoate (Tn5271) and chlorobenzene (Tn5280) catabolic transposons encode different aromatic ring dioxygenases, however they both illustrate the constraints that must be overcome when recipients of catabolic transposons assemble and regulate complete metabolic pathways for environmental pollutants. The structures of the chlorobenzoate catabolic transposon Tn5271 and the related haloacetate dehalogenase catabolic element of plasmid pUO1 are compared and a hypothesis for their formation is discussed. The structures and activities of catabolic transposons of unknown class coding for the catabolism of halogenated alkanoic acids (DEH) and chlorobiphenyl (Tn4371) are also reviewed.  相似文献   

3.
Molecular mechanisms of genetic adaptation to xenobiotic compounds.   总被引:55,自引:0,他引:55       下载免费PDF全文
Microorganisms in the environment can often adapt to use xenobiotic chemicals as novel growth and energy substrates. Specialized enzyme systems and metabolic pathways for the degradation of man-made compounds such as chlorobiphenyls and chlorobenzenes have been found in microorganisms isolated from geographically separated areas of the world. The genetic characterization of an increasing number of aerobic pathways for degradation of (substituted) aromatic compounds in different bacteria has made it possible to compare the similarities in genetic organization and in sequence which exist between genes and proteins of these specialized catabolic routes and more common pathways. These data suggest that discrete modules containing clusters of genes have been combined in different ways in the various catabolic pathways. Sequence information further suggests divergence of catabolic genes coding for specialized enzymes in the degradation of xenobiotic chemicals. An important question will be to find whether these specialized enzymes evolved from more common isozymes only after the introduction of xenobiotic chemicals into the environment. Evidence is presented that a range of genetic mechanisms, such as gene transfer, mutational drift, and genetic recombination and transposition, can accelerate the evolution of catabolic pathways in bacteria. However, there is virtually no information concerning the rates at which these mechanisms are operating in bacteria living in nature and the response of such rates to the presence of potential (xenobiotic) substrates. Quantitative data on the genetic processes in the natural environment and on the effect of environmental parameters on the rate of evolution are needed.  相似文献   

4.
Bacterial dehalogenases catalyse the cleavage of carbon-halogen bonds, which is a key step in aerobic mineralization pathways of many halogenated compounds that occur as environmental pollutants. There is a broad range of dehalogenases, which can be classified in different protein superfamilies and have fundamentally different catalytic mechanisms. Identical dehalogenases have repeatedly been detected in organisms that were isolated at different geographical locations, indicating that only a restricted number of sequences are used for a certain dehalogenation reaction in organohalogen-utilizing organisms. At the same time, massive random sequencing of environmental DNA, and microbial genome sequencing projects have shown that there is a large diversity of dehalogenase sequences that is not employed by known catabolic pathways. The corresponding proteins may have novel functions and selectivities that could be valuable for biotransformations in the future. Apparently, traditional enrichment and metagenome approaches explore different segments of sequence space. This is also observed with alkane hydroxylases, a category of proteins that can be detected on basis of conserved sequence motifs and for which a large number of sequences has been found in isolated bacterial cultures and genomic databases. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward synthetic organohalogens and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals.  相似文献   

5.
Microbial breakdown of halogenated aromatic pesticides and related compounds.   总被引:33,自引:0,他引:33  
Considerable progress has been made in the last few years in understanding the mechanisms of microbial degradation of halogenated aromatic compounds. Much is already known about the degradation mechanisms under aerobic conditions, and metabolism under anaerobiosis has lately received increasing attention. The removal of the halogen substituent is a key step in degradation of halogenated aromatics. This may occur as an initial step via reductive, hydrolytic or oxygenolytic mechanisms, or after cleavage of the aromatic ring at a later stage of metabolism. In addition to degradation, several biotransformation reactions, such as methylation and polymerization, may take place and produce more toxic or recalcitrant metabolites. Studies with pure bacterial and fungal cultures have given detailed information on the biodegradation pathways of several halogenated aromatic compounds. Several of the key enzymes have been purified or studied in cell extracts, and there is an increasing understanding of the organization and regulation of the genes involved in haloaromatic degradation. This review will focus on the biodegradation and biotransformation pathways that have been established for halogenated phenols, phenoxyalkanoic acids, benzoic acids, benzenes, anilines and structurally related halogenated aromatic pesticides. There is a growing interest in developing microbiological methods for clean-up of soil and water contaminated with halogenated aromatic compounds.  相似文献   

6.
Bacterial catabolic transposons   总被引:14,自引:0,他引:14  
The introduction of foreign organic hydrocarbons into the environment in recent years, as in the widespread use of antibiotics, has resulted in the evolution of novel adaptive mechanisms by bacteria for the biodegradation of the organic pollutants. Plasmids have been implicated in the catabolism of many of these complex xenobiotics. The catabolic genes are prone to undergo genetic rearrangement and this is due to their presence on transposons or their association with transposable elements. Most of the catabolic transposons have structural features of the class I (composite) elements. These include transposons for chlorobenzoate (Tn5271), chlorobenzene (Tn5280), the newly discovered benzene catabolic transposon (Tn5542), and transposons encoding halogenated alkanoates and nylon-oligomer-degradative genes. Transposons for the catabolism of toluene (Tn4651, Tn4653, Tn4656) and naphthalene (Tn4655) belong to class II (Tn3 family) elements. Many catabolic genes have been associated with insertion sequences, which suggests that these gene clusters could be rapidly disseminated among the bacterial populations. This greatly expands the substrate range of the microorganisms in the environment and aids the evolution of new and novel degradative pathways. This enhanced metabolic versatility can be exploited for and is believed to play a major part in the bioremediation of polluted environments. Received: 13 July 1998 / Received revision: 22 September 1998 / Accepted: 26 September 1998  相似文献   

7.
8.
The relevance of the β-proteobacterial Burkholderiales order in the degradation of a vast array of aromatic compounds, including several priority pollutants, has been largely assumed. In this review, the presence and organization of genes encoding oxygenases involved in aromatics biodegradation in 80 Burkholderiales genomes is analysed. This genomic analysis underscores the impressive catabolic potential of this bacterial lineage, comprising nearly all of the central ring-cleavage pathways reported so far in bacteria and most of the peripheral pathways involved in channelling of a broad diversity of aromatic compounds. The more widespread pathways in Burkholderiales include protocatechuate ortho ring-cleavage, catechol ortho ring-cleavage, homogentisate ring-cleavage and phenylacetyl-CoA ring-cleavage pathways found in at least 60% of genomes analysed. In general, a genus-specific pattern of positional ordering of biodegradative genes is observed in the catabolic clusters of these pathways indicating recent events in its evolutionary history. In addition, a significant bias towards secondary chromosomes, now termed chromids, is observed in the distribution of catabolic genes across multipartite genomes, which is consistent with a genus-specific character. Strains isolated from environmental sources such as soil, rhizosphere, sediment or sludge show a higher content of catabolic genes in their genomes compared with strains isolated from human, animal or plant hosts, but no significant difference is found among Alcaligenaceae, Burkholderiaceae and Comamonadaceae families, indicating that habitat is more of a determinant than phylogenetic origin in shaping aromatic catabolic versatility.  相似文献   

9.
The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.  相似文献   

10.
The Desulfitobacterium genus   总被引:1,自引:0,他引:1  
Desulfitobacterium spp. are strictly anaerobic bacteria that were first isolated from environments contaminated by halogenated organic compounds. They are very versatile microorganisms that can use a wide variety of electron acceptors, such as nitrate, sulfite, metals, humic acids, and man-made or naturally occurring halogenated organic compounds. Most of the Desulfitobacterium strains can dehalogenate halogenated organic compounds by mechanisms of reductive dehalogenation, although the substrate spectrum of halogenated organic compounds varies substantially from one strain to another, even with strains belonging to the same species. A number of reductive dehalogenases and their corresponding gene loci have been isolated from these strains. Some of these loci are flanked by transposition sequences, suggesting that they can be transmitted by horizontal transfer via a catabolic transposon. Desulfitobacterium spp. can use H2 as electron donor below the threshold concentration that would allow sulfate reduction and methanogenesis. Furthermore, there is some evidence that syntrophic relationships occur between Desulfitobacterium spp. and sulfate-reducing bacteria, from which the Desulfitobacterium cells acquire their electrons by interspecies hydrogen transfer, and it is believed that this relationship also occurs in a methanogenic consortium. Because of their versatility, desulfitobacteria can be excellent candidates for the development of anaerobic bioremediation processes. The release of the complete genome of Desulfitobacterium hafniense strain Y51 and information from the partial genome sequence of D. hafniense strain DCB-2 will certainly help in predicting how desulfitobacteria interact with their environments and other microorganisms, and the mechanisms of actions related to reductive dehalogenation.  相似文献   

11.
Abstract Considerable progress has been made in the last few years in understanding the mechanisms of microbial degradation of halogenated aromatic compounds. Much is already known about the degradation mechanisms under aerobic conditions, and metabolism under anaerobiosis has lately received increasing attention. The removal of the halogen substituent is a key step in degradation of halogenated aromatics. This may occur as an initial step via reductive, hydrolytic or oxygenolytic mechanisms, or after cleavage of the aromatic ring at a later stage of metabolism. In addition to degradation, several biotransformation reactions, such as methylation and polymerization, may take place and produce more toxic or recalcitrant metabolites. Studies with pure bacterial and fungal cultures have given detailed information on the biodegradation pathways of several halogenated aromatic compounds. Several of the key enzymes have been purified or studied in cell extracts, and there is an increasing understanding of the organization and regulation of the genes involved in haloaromatic degradation. This review will focus on the biodegradation and biotransformation pathways that have been established for halogenated phenols, phenoxyalkanoic acids, benzoic acids, benzenes, anilines and structurally related halogenated aromatic pesticides. There is a growing interest in developing microbiological methods for clean-up of soil and water contaminated with halogenated aromatic compounds.  相似文献   

12.
Bioactivation of xenobiotics by formation of toxic glutathione conjugates   总被引:3,自引:0,他引:3  
Evidence has been accumulating that several classes of compounds are converted by glutathione conjugate formation to toxic metabolites. The aim of this review is to summarize the current knowledge on the biosynthesis and toxicity of glutathione S-conjugates derived from halogenated alkanes, halogenated alkenes, and hydroquinones and quinones. Different types of toxic glutathione conjugates have been identified and will be discussed in detail: (i) conjugates which are transformed to electrophilic sulfur mustards, (ii) conjugates which are converted to toxic metabolites in an enzyme-catalyzed multistep mechanism, (iii) conjugates which serve as a transport form for toxic quinones and (iv) reversible glutathione conjugate formation and release of the toxic agent in cell types with lower glutathione concentrations. The kidney is the main, with some compounds the exclusive, target organ for compounds metabolized by pathways (i) to (iii). Selective toxicity to the kidney is easily explained due to the capability of the kidney to accumulate intermediates formed by processing of S-conjugates and to bioactivate these intermediates to toxic metabolites. The influences of other factors participating in the renal susceptibility are discussed.  相似文献   

13.
14.
Plasmids that encode genes for the degradation of recalcitrant compounds are often examined only for characteristics of the degradative pathways and ignore regions that are necessary for plasmid replication, incompatibility, and conjugation. If these characteristics were known, then the mobility of the catabolic genes between species could be predicted and different catabolic pathways might be combined to alter substrate range. Two catabolic plasmids, pSS50 and pSS60, isolated from chlorobiphenyl-degrading strains and a 3-chlorobenzoate-degrading plasmid, pBR60, were compared with the previously described IncP group (Pseudomonas group P-1) plasmids pJP4 and R751. All three of the former plasmids were also members of the IncP group, although pBR60 is apparently more distantly related. DNA probes specific for known genetic loci were used to determine the order of homologous loci on the plasmids. In all of these plasmids the order is invariant, demonstrating the conservation of this "backbone" region. In addition, all five plasmids display at least some homology with the mercury resistance transposon, Tn501, which has been suggested to be characteristic of the beta subgroup of the IncP plasmids. Plasmids pSS50 and pSS60 have been mapped in detail, and repeat sequences that surround the suspected degradation genes are described.  相似文献   

15.
Biological evolution has resulted in a richness and diversity of species. Among microorganisms this is most evident in the wealth and diversity of biochemical transformations. Evidence for evolutionary relationships may be obtained from comparative studies, but with microorganisms it is also possible to follow evolution in action. Microbial populations adapt rapidly to changes in the environment and the evolution of new metabolic activities can be observed in laboratory experiments. The enzymes of many catabolic pathways are synthesized in response to the presence of inducing substrates. New catabolic activities may be acquired by mutations in regulatory genes resulting in alterations in the specificity of induction, or in enzyme synthesis in the absence of inducer. Mutations in structural genes may given rise to enzymes with altered substrate specificities. In bacteria, catabolic genes may be carried on plasmids and the exchange of plasmids among bacterial populations increases the evolutionary potential. Experiments in microbial evolution have produced strains with novel catabolic activities involving regulatory or structural gene mutations, gene duplications and plasmid exchange. Enzymes studied in this way include amidase, ribitol dehydrogenase, evolved beta-galactosidase, and enzymes of the catabolic pathways for pentoses and pentitols and haloaromatic compounds.  相似文献   

16.
Cupriavidus necator JMP134 is a model for chloroaromatics biodegradation, capable of mineralizing 2,4-D, halobenzoates, chlorophenols and nitrophenols, among other aromatic compounds. We performed the metabolic reconstruction of aromatics degradation, linking the catabolic abilities predicted in silico from the complete genome sequence with the range of compounds that support growth of this bacterium. Of the 140 aromatic compounds tested, 60 serve as a sole carbon and energy source for this strain, strongly correlating with those catabolic abilities predicted from genomic data. Almost all the main ring-cleavage pathways for aromatic compounds are found in C. necator : the β-ketoadipate pathway, with its catechol, chlorocatechol, methylcatechol and protocatechuate ortho ring-cleavage branches; the (methyl)catechol meta ring-cleavage pathway; the gentisate pathway; the homogentisate pathway; the 2,3-dihydroxyphenylpropionate pathway; the (chloro)hydroxyquinol pathway; the (amino)hydroquinone pathway; the phenylacetyl-CoA pathway; the 2-aminobenzoyl-CoA pathway; the benzoyl-CoA pathway and the 3-hydroxyanthranilate pathway. A broad spectrum of peripheral reactions channel substituted aromatics into these ring cleavage pathways. Gene redundancy seems to play a significant role in the catabolic potential of this bacterium. The literature on the biochemistry and genetics of aromatic compounds degradation is reviewed based on the genomic data. The findings on aromatic compounds biodegradation in C. necator reviewed here can easily be extrapolated to other environmentally relevant bacteria, whose genomes also possess a significant proportion of catabolic genes.  相似文献   

17.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

18.
Sialic acids are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host sialic acid is to regulate innate immunity, and microbes have evolved various strategies for subverting this process by decorating their surfaces with sialylated oligosaccharides that mimic those of the host. These subversive strategies include a de novo synthetic pathway and at least two truncated pathways that depend on scavenging host-derived intermediates. A fourth strategy involves modification of sialidases so that instead of transferring sialic acid to water (hydrolysis), a second active site is created for binding alternative acceptors. Sialic acids also are excellent sources of carbon, nitrogen, energy, and precursors of cell wall biosynthesis. The catabolic strategies for exploiting host sialic acids as nutritional sources are as diverse as the biosynthetic mechanisms, including examples of horizontal gene transfer and multiple transport systems. Finally, as compounds coating the surfaces of virtually every vertebrate cell, sialic acids provide information about the host environment that, at least in Escherichia coli, is interpreted by the global regulator encoded by nanR. In addition to regulating the catabolism of sialic acids through the nan operon, NanR controls at least two other operons of unknown function and appears to participate in the regulation of type 1 fimbrial phase variation. Sialic acid is, therefore, a host molecule to be copied (molecular mimicry), eaten (nutrition), and interpreted (cell signaling) by diverse metabolic machinery in all major groups of mammalian pathogens and commensals.  相似文献   

19.
The enzymatic synthesis of antiviral agents.   总被引:2,自引:0,他引:2  
The majority of potential antiviral agents which are currently undergoing clinical trials are inhibitors of the replication of nucleic acids. The most common class of these inhibitors are nucleoside analogues and the elucidation of synthetic routes to these compounds has been of interest for many years as many are anticancer agents. One synthetic development has been the application of bio-transformations to nucleoside syntheses. This topic has been reviewed recently (Shirae et al., 1991) but this review is not widely available. In the present review, the application of biotechnology to the synthesis of antiviral agents including those which are not nucleoside analogues will be discussed. Enzymatic syntheses of nucleosides can be simpler and quicker than syntheses carried out by chemical methods. The most useful enzymes are those found in catabolic pathways. Nucleoside phosphorylases and N-deoxyribosyltransferases have both been widely used for nucleoside synthesis catalysing the transfer of sugar residues from a donor nucleoside to a heterocyclic base. Enzymatic methods have also been applied to the resolution of racemic mixtures and adenosine deaminase is a convenient catalyst for the hydrolysis of amino groups on purines and purine analogues. Regioselective deprotection of nucleoside esters has been achieved with lipases and these enzymes have also been applied to the synthesis of esters of sugar-like alkaloids. The latter have potential as inhibitors of the replication of HIV. Esterases have also been used in combined chemical and enzymatic syntheses of organophosphorus antiviral agents.  相似文献   

20.
The Microscreen assay was developed as a means of testing very small samples, as in complex mixture fractionation. It is a multi-endpoint assay which utilizes E. coli WP2s(lambda). Exposure takes place to serial dilutions of the test compound in microtitre wells (250 microliters) followed by sampling from wells in which growth has occurred ('non-toxic wells'). Although a number of different endpoints can be measured, only the prophage induction endpoint (the first one developed) has been extensively tested. Results with 133 compounds are presented. These include 111 compounds which have been tested in the S. typhimurium assay and 66 compounds for which both rodent bioassay and S. typhimurium assay data exists. The concordance for the Microscreen assay and the S. typhimurium assay was 71%. For this group of compounds, the sensitivity of the Microscreen assay in detecting carcinogens was 76% compared with 58% for the S. typhimurium assay. However, the S. typhimurium assay was somewhat more specific (69%) compared with the Microscreen (56%). The overall association between carcinogenicity and Microscreen results was statistically significant (p = 0.029), whereas for the S. typhimurium assay the association with carcinogenicity was non-significant (p = 0.086). The Microscreen assay was able to detect halogenated compounds better than the S. typhimurium assay. The Microscreen assay should prove useful in complex mixture fractionation, or in other situations where sample size is limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号