首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The patients with Crohn's disease (CD) have a 'leaky gut' manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-alpha (TNF-alpha) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-alpha is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-alpha increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-alpha-induced increase in MLCK gene activity. By progressive 5' deletion, minimal MLCK promoter was localized between -313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-alpha-induced increase in MLCK promoter activity was mediated by NF-kappaB activation. There were eight kappaB binding sites on MLCK promoter. The NF-kappaB1 site at +48 to +57 mediated TNF-alpha-induced increase in MLCK promoter activity. The NF-kappaB2 site at -325 to -316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-kappaB dimer type binding to the kappaB sites. p50/p65 dimer preferentially binds to the NF-kappaB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-kappaB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-alpha-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-alpha-induced modulation of MLCK gene activity.  相似文献   

2.
3.
A defective intestinal epithelial tight junction (TJ) barrier has been proposed as an important pathogenic factor contributing to the intestinal inflammation of Crohn's disease. Glucocorticoids are first-line therapeutic agents for the treatment of moderate to severe Crohn's disease. Glucocorticoid treatment has been shown to induce retightening of the intestinal TJ barrier defect in Crohn's disease patients. However, the mechanisms that mediate the glucocorticoid therapeutic action on intestinal TJ barrier function remain unknown. The aim of this study was to elucidate the mechanism of glucocorticoid modulation of the intestinal epithelial TJ barrier using an in vitro model system. Filter-grown Caco-2 intestinal epithelial cells were used as an in vitro model to examine the effects of glucocorticoids on basal intestinal epithelial TJ barrier function and on TNF-alpha-induced disruption of the TJ barrier. Glucocorticoids (prednisolone and dexamethasone) did not have a significant effect on baseline Caco-2 TJ barrier function but prevented the TNF-alpha-induced increase in Caco-2 TJ permeability. The glucocorticoid protective effect against the TNF-alpha-induced increase in Caco-2 TJ permeability required activation of the glucocorticoid receptor (GR) complex. The activation of the GR complex resulted in GR complex binding to the glucocorticoid response element (GRE) site on DNA and activation of a GR-responsive promoter. Glucocorticoids inhibited the TNF-alpha-induced increase in myosin light chain kinase (MLCK) protein expression, a key process mediating the TNF-alpha increase in intestinal TJ permeability. The glucocorticoid inhibition of the TNF-alpha-induced increase in MLCK protein expression was due to the binding of the GR complex to a GRE binding site on the MLCK promoter region suppressing the TNF-alpha-induced activation. Glucocorticoids inhibit the TNF-alpha-induced increase in Caco-2 TJ permeability. The prednisolone protective action was mediated by binding of activated GR complex to the GRE site on the MLCK promoter, suppressing the TNF-alpha-induced increase in MLCK gene activity, protein expression, and subsequent opening of the intestinal TJ barrier.  相似文献   

4.
Crohn's disease (CD) patients have an abnormal increase in intestinal epithelial permeability. The defect in intestinal tight junction (TJ) barrier has been proposed as an important etiologic factor of CD. TNF-alpha increases intestinal TJ permeability. Because TNF-alpha levels are markedly increased in CD, TNF-alpha increase in intestinal TJ permeability could be a contributing factor of intestinal permeability defect in CD. Our purpose was to determine some of the intracellular mechanisms involved in TNF-alpha modulation of intestinal epithelial TJ permeability by using an in vitro intestinal epithelial system consisting of filter-grown Caco-2 monolayers. TNF-alpha produced a concentration- and time-dependent increase in Caco-2 TJ permeability. TNF-alpha-induced increase in Caco-2 TJ permeability correlated with Caco-2 NF-kappa B activation. Inhibition of TNF-alpha-induced NF-kappa B activation by selected NF-kappa B inhibitors, curcumin and triptolide, prevented the increase in Caco-2 TJ permeability, indicating that NF-kappa B activation was required for the TNF-alpha-induced increase in Caco-2 TJ permeability. This increase in Caco-2 TJ permeability was accompanied by down-regulation of zonula occludens (ZO)-1 proteins and alteration in junctional localization of ZO-1 proteins. TNF-alpha modulation of ZO-1 protein expression and junctional localization were also prevented by NF-kappa B inhibitors. TNF-alpha did not induce apoptosis in Caco-2 cells, suggesting that apoptosis was not the mechanism involved in TNF-alpha-induced increase in Caco-2 TJ permeability. These results demonstrate for the first time that TNF-alpha-induced increase in Caco-2 TJ permeability was mediated by NF-kappa B activation. The increase in permeability was associated with NF-kappa B-dependent downregulation of ZO-1 protein expression and alteration in junctional localization.  相似文献   

5.
IL-1beta is a prototypical proinflammatory cytokine that plays a central role in the intestinal inflammation amplification cascade. Recent studies have indicated that a TNF-alpha- and IFN-gamma-induced increase in intestinal epithelial paracellular permeability may be an important mechanism contributing to intestinal inflammation. Despite its central role in promoting intestinal inflammation, the role of IL-1beta on intestinal epithelial tight junction (TJ) barrier function remains unclear. The major aims of this study were to determine the effect of IL-1beta on intestinal epithelial TJ permeability and to elucidate the mechanisms involved in this process, using a well-established in vitro intestinal epithelial model system consisting of filter-grown Caco-2 intestinal epithelial monolayers. IL-1beta (0-100 ng/ml) produced a concentration- and time-dependent decrease in Caco-2 transepithelial resistance. Conversely, IL-1beta caused a progressive time-dependent increase in transepithelial permeability to paracellular marker inulin. IL-1beta-induced increase in Caco-2 TJ permeability was accompanied by a rapid activation of NF-kappaB. NF-kappaB inhibitors, pyrrolidine dithiocarbamate and curcumin, prevented the IL-1beta-induced increase in Caco-2 TJ permeability. To further confirm the role of NF-kappaB in the IL-1beta-induced increase in Caco-2 TJ permeability, NF-kappaB p65 expression was silenced by small interfering RNA transfection. NF-kappaB p65 depletion completely inhibited the IL-1beta-induced increase in Caco-2 TJ permeability. IL-1beta did not induce apoptosis in the Caco-2 cell. In conclusion, our findings show for the first time that IL-1beta at physiologically relevant concentrations causes an increase in intestinal epithelial TJ permeability. The IL-1beta-induced increase in Caco-2 TJ permeability was mediated in part by the activation of NF-kappaB pathways but not apoptosis.  相似文献   

6.
The intracellular mechanisms that mediate cytochalasin-induced increase in intestinal epithelial tight junction (TJ) permeability are unclear. In this study, we examined the involvement of myosin light chain kinase (MLCK) in this process, using the filter-grown Caco-2 intestinal epithelial monolayers. Cytochalasin B (Cyto B) (5 microg/ml) produced an increase in Caco-2 MLCK activity, which correlated with the increase in Caco-2 TJ permeability. The inhibition of Cyto B-induced MLCK activation prevented the increase in Caco-2 TJ permeability. Additionally, myosin-Mg(2+)-ATPase inhibitor and metabolic inhibitors (which inhibit MLCK induced actin-myosin contraction) also prevented the Cyto B-induced increase in Caco-2 TJ permeability. Cyto B caused a late-phase (15-30 min) aggregation of actin fragments into large actin clumps, which was also inhibited by MLCK inhibitors. Cyto B produced a morphological disturbance of the ZO-1 TJ proteins, visually correlating with the functional increase in Caco-2 TJ permeability. The MLCK and myosin-Mg(2+)-ATPase inhibitors prevented both the functional increase in TJ permeability and disruption of ZO-1 proteins. These findings suggested that Cyto B-induced increase in Caco-2 TJ permeability is regulated by MLCK activation.  相似文献   

7.
8.
9.
The effects of physiologically relevant increase in temperature (37-41 degrees C) on intestinal epithelial tight junction (TJ) barrier have not been previously studied. Additionally, the role of heat-shock proteins (HSPs) in the regulation of intestinal TJ barrier during heat stress remains unknown. Because heat-induced disturbance of intestinal TJ barrier could lead to endotoxemia and bacterial translocation during physiological thermal stress, the purpose of this study was to investigate the effects of modest, physiologically relevant increases in temperature (37-41 degrees C) on intestinal epithelial TJ barrier and to examine the protective role of HSPs on intestinal TJ barrier. Filter-grown Caco-2 intestinal epithelial cells were used as an in vitro intestinal epithelial model system to assess the effects of heat exposure on intestinal TJ barrier. Exposure of filter-grown Caco-2 monolayers to modest increases in temperatures (37-41 degrees C) resulted in a significant time- and temperature-dependent increases in Caco-2 TJ permeability. Exposure to modest heat (39 or 41 degrees C) resulted in rapid and sustained increases in HSP expression; and inhibition of HSP expression produced a marked increase in heat-induced increase in Caco-2 TJ permeability (P < 0.001). Heat exposure (41 degrees C) resulted in a compensatory increase in Caco-2 occludin protein expression and an increase in junctional localization. Inhibition of HSP expression prevented the compensatory upregulation of occludin protein expression and produced a marked disruption in junctional localization of occludin protein during heat stress. In conclusion, our findings demonstrate for the first time that a modest, physiologically relevant increase in temperature causes an increase in intestinal epithelial TJ permeability. Our data also show that HSPs play an important protective role in preventing the heat-induced disruption of intestinal TJ barrier and suggest that HSP mediated upregulation of occludin expression may be an important mechanism involved in the maintenance of intestinal epithelial TJ barrier function during heat stress.  相似文献   

10.
11.
12.
13.
Iron exacerbates various types of liver injury in which nuclear factor (NF)-kappaB-driven genes are implicated. This study tested a hypothesis that iron directly elicits the signaling required for activation of NF-kappaB and stimulation of tumor necrosis factor (TNF)-alpha gene expression in Kupffer cells. Addition of Fe2+ but not Fe3+ (approximately 5-50 microM) to cultured rat Kupffer cells increased TNF-alpha release and TNF-alpha promoter activity in a NF-kappaB-dependent manner. Cu+ but not Cu2+ stimulated TNF-alpha protein release and promoter activity but with less potency. Fe2+ caused a disappearance of the cytosolic inhibitor kappaBalpha, a concomitant increase in nuclear p65 protein, and increased DNA binding of p50/p50 and p65/p50 without affecting activator protein-1 binding. Addition of Fe2+ to the cells resulted in an increase in electron paramagnetic resonance-detectable.OH peaking at 15 min, preceding activation of NF-kappaB but coinciding with activation of inhibitor kappaB kinase (IKK) but not c-Jun NH2-terminal kinase. In conclusion, Fe2+ serves as a direct agonist to activate IKK, NF-kappaB, and TNF-alpha promoter activity and to induce the release of TNF-alpha protein by cultured Kupffer cells in a redox status-dependent manner. We propose that this finding offers a molecular basis for iron-mediated accentuation of TNF-alpha-dependent liver injury.  相似文献   

14.
Chen C  Chou C  Sun Y  Huang W 《Cellular signalling》2001,13(8):543-553
TNF-alpha induced an increase in intercellular adhesion molecule-1 (ICAM-1) expression in human A549 epithelial cells and immunofluorescence staining confirmed this result. The enhanced ICAM-1 expression was shown to increase the adhesion of U937 cells to A549 cells. Tyrosine kinase inhibitors (genistein or tyrphostin 23) or phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D 609) attenuated TNF-alpha-induced ICAM-1 expression. TNF-alpha produced an increase in protein kinase C (PKC) activity and this effect was inhibited by D 609. PKC inhibitors (staurosporine, Ro 31-8220, calphostin C, or Go 6976) also inhibited TNF-alpha-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression, this effect was inhibited by genistein or tyrphostin 23. Treatment of cells with TNF-alpha resulted in stimulation of p44/42 MAPK, p38, and JNK. However, TNF-alpha-induced ICAM-1 expression was not affected by either MEK inhibitor, PD 98059, or p38 inhibitor, SB 203580. A cell-permeable ceramide analog, C(2) ceramide, also stimulated the activation of these three MAPKs, but had no effect on ICAM-1 expression. NF-kappaB DNA-protein binding and ICAM-1 promoter activity were enhanced by TNF-alpha and these effects were inhibited by D 609, calphostin C, or tyrphostin 23, but not by PD 98059 or SB 203580. TPA also stimulated NF-kappaB DNA-protein binding and ICAM-1 promoter activity, these effects being inhibited by genistein or tyrphostin 23. TNF-alpha- or TPA-induced ICAM-1 promoter activity was inhibited by dominant negative PKCalpha or IKK2, but not IKK1 mutant. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by Ro 31-8220 or tyrphostin 23. These data suggest that, in A549 cells, TNF-alpha activates PC-PLC to induce activation of PKCalpha and protein tyrosine kinase, resulting in the stimulation of IKK2, and NF-kappaB in the ICAM-1 promoter, then initiation of ICAM-1 expression and neutrophil adhesion. However, activation of p44/42 MAPK, p38, and JNK is not involved in this event.  相似文献   

15.
16.
TNF-alpha induced a dose- and time-dependent increase in cyclooxygenase-2 (COX-2) expression and PGE2 formation in human NCI-H292 epithelial cells. Immunofluorescence staining demonstrated that COX-2 was expressed in cytosol and nuclear envelope. Tyrosine kinase inhibitors (genistein or herbimycin) or phosphoinositide-specific phospholipase C inhibitor (U73122) blocked TNF-alpha-induced COX-2 expression. TNF-alpha also stimulated phosphatidylinositol hydrolysis and protein kinase C (PKC) activity, and both were abolished by genistein or U73122. The PKC inhibitor, staurosporine, also inhibited TNF-alpha-induced response. The 12-O-tetradecanoylphorbol 13-acetate (TPA), a PKC activator, also stimulated COX-2 expression, this effect being inhibited by genistein or herbimycin. NF-kappaB DNA-protein binding and COX-2 promoter activity were enhanced by TNF-alpha, and these effects were inhibited by genistein, U73122, staurosporine, or pyrolidine dithiocarbamate. TPA stimulated both NF-kappaB DNA-protein binding and COX-2 promoter activity, these effects being inhibited by genistein, herbimycin, or pyrolidine dithiocarbamate. The TNF-alpha-induced, but not the TPA-induced, COX-2 promoter activity was inhibited by phospholipase C-gamma2 mutants, and the COX-2 promoter activity induced by either agent was attenuated by dominant-negative mutants of PKC-alpha, NF-kappaB-inducing kinase, or I-kappaB (inhibitory protein that dissociates from NF-kappaB) kinase (IKK)1 or 2. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by staurosporine or herbimycin. These results suggest that, in NCI-H292 epithelial cells, TNF-alpha might activate phospholipase C-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and protein tyrosine kinase, resulting in the activation of NF-kappaB-inducing kinase and IKK1/2, and NF-kappaB in the COX-2 promoter, then initiation of COX-2 expression and PGE2 release.  相似文献   

17.
Defective intestinal epithelial tight junction (TJ) barrier has been shown to be an important pathogenic factor contributing to the development of intestinal inflammation. The expression of occludin is markedly decreased in intestinal permeability disorders, including in Crohn's disease, ulcerative colitis, and celiac disease, suggesting that the decrease in occludin expression may play a role in the increase in intestinal permeability. The purpose of this study was to delineate the involvement of occludin in intestinal epithelial TJ barrier by selective knock down of occludin in in vitro (filter-grown Caco-2 monolayers) and in vivo (recycling perfusion of mouse intestine) intestinal epithelial models. Our results indicated that occludin small-interfering RNA (siRNA) transfection causes an increase in transepithelial flux of various-sized probes, including urea, mannitol, inulin, and dextran, across the Caco-2 monolayers, without affecting the transepithelial resistance. The increase in relative flux rate was progressively greater for larger-sized probes, indicating that occludin depletion has the greatest effect on the flux of large macromolecules. siRNA-induced knock down of occludin in mouse intestine in vivo also caused an increase in intestinal permeability to dextran but did not affect intestinal tissue transepithelial resistance. In conclusion, these results show for the first time that occludin depletion in intestinal epithelial cells in vitro and in vivo leads to a selective or preferential increase in macromolecule flux, suggesting that occludin plays a crucial role in the maintenance of TJ barrier through the large-channel TJ pathway, the pathway responsible for the macromolecule flux.  相似文献   

18.
Serine protease inhibitor SerpinE2 is known as a cytokine-inducible gene. Here, we investigated whether tumor necrosis factor alpha-(TNF-alpha)-induced expression of SerpinE2 is mediated by the nuclear factor-kappaB (NF-kappaB) p65 subunit. Both steady state and TNF-alpha-induced expression of SerpinE2 mRNA were abrogated in p65-/- murine embryonic fibroblasts (MEFs). Reconstitution with wild-type p65 rescued SerpinE2 mRNA expression in an IkappaB kinase beta-dependent manner. Electrophoresis mobility shift assay and ChIP assay demonstrated that p65 bound to the kappaB-like DNA sequence located at approximately -9 kbp in the SerpinE2 promoter. In addition, TNF-alpha stimulated luciferase gene expression driven by the kappaB-like element in the reconstituted MEFs, but not in p65-/- MEFs. These results indicated that activation of NF-kappaB p65 plays an important role in TNF-alpha-induced expression of SerpinE2.  相似文献   

19.
Tumor necrosis factor-alpha (TNF-alpha) is known to induce changes in endothelial cell morphology and permeability, but the mechanisms have not been extensively characterized. TNF-alpha rapidly induced RhoA activation and myosin light chain phosphorylation, but caused only small changes to cortical F-actin, without significantly increasing paracellular permeability up to 30 min after stimulation. TNF-alpha subsequently caused a progressive increase in permeability and in stress fiber reorganization, cell elongation, and intercellular gap formation over 8-24 h. Consistent with the increased permeability, Occludin and JAM-A were removed from tight junctions and ZO-1 was partially redistributed. Rho/ROCK but not MLCK inhibition prevented the long-term TNF-alpha-induced changes in F-actin and cell morphology, but ROCK inhibition did not affect permeability. These results suggest that the gradual increase in permeability induced by TNF-alpha does not reflect contractile mechanisms mediated by Rho, ROCK, and MLCK, but involves long-term reorganization of tight junction proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号