首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Realistic functional responses are required for accurate model predictions at the community level. However, controversy remains regarding which types of dependencies need to be included in functional response models. Several studies have shown an effect of very high predator densities on per capita predation rates, but it is unclear whether this predator dependence is also important at low predator densities. We fit integrated functional response models to predation data from 4-h experiments where we had varied both predator and prey densities. Using an information theoretic approach we show that the best-fit model includes moderate predator dependence, which was equally strong even at low predator densities. The best fits of Beddington–DeAngelis and Arditi–Akçakaya functional responses were closely followed by the fit of the Arditi–Ginzburg model. A Holling type III functional response did not describe the data well. In addition, independent behavioral observations revealed high encounter rates between predators. We quantified the number of encounters between predators and the time the focal predator spent interacting with other individuals per encounter. This time “wasted” on conspecifics reduced the total time available for foraging and may therefore account for lower predation rates at higher predator densities. Our findings imply that ecological theory needs to take realistic levels of predator dependence into account.  相似文献   

2.
We use a model of open predation experiments to define scale domains that differ in terms of the controlling processes and scale dependence of predator impacts. For experimental arenas that are small compared to the movements of the prey (small scale domain) the model predicts that predator impacts are scale independent and controlled by prey movements. For arenas of intermediate scale we predict that predator impacts are scale dependent and controlled by both prey movements and direct predation, and for the largest scale domain we predict weak scale dependence and predation control.
We propose that the scale‐domain concept is useful when designing and interpreting field experiments. As an illustration we apply the concept to experiments examining predator effects on the stream benthos. First, we test two key assumptions of the underlying model: that area‐specific prey migration rates decrease with increasing size of experimental arenas and that predation rates are independent of arena size. For this purpose we used published estimates of prey emigration and predator consumption rates for nine studies examining the effects of stream predators on benthic prey. We found that prey per capita emigration rates but not predation rates decreased with increasing arena length.
Second, we demonstrate a method for identifying the scale domain of real experiments. The model of predation experiments was parameterized using experimental data and the expected spatial and temporal scale dependence of predator impacts on prey in these experiments was simulated. The simulations suggest that the studies conducted in the largest arenas (length 15–35 m) should be classified as large‐scale, consumption‐controlled experiments, whereas the experiments conducted in smaller arenas (length 1.5–6 m) should be classified as small or intermediate‐scale. We also attempted to determine the scale domain of the experiments in a large data set, including results from most published stream predation experiments. The majority of arenas used in these experiments (73%) were smaller than 1 m in length. Our data on the scale dependence of predation and prey migration rate suggest that experiments in this scale range (<1 m) should be classified as small‐scale, movement‐controlled experiments for most prey taxa.  相似文献   

3.
The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non-classical lifespan effects.  相似文献   

4.
Migration is expected to benefit individuals through exposure to higher quality forage and reducing predation rates more than non‐migratory conspecifics. Previous studies of partially migratory ungulates (with migrant and resident individuals) have focused on bottom–up factors regulating resident and migrant segments, yet differential predation between strategies could also be a density‐dependent regulatory mechanism. Our study tested for density‐dependence in mortality, as well as mechanisms of ­bottom–up or top–down regulation in the resident and migrant portions of the partially migratory Ya Ha Tinda elk population. We tested for density dependence in adult female and juvenile survival rates, and then discriminated between predator‐ and food‐regulation hypotheses by testing for density‐dependence amongst mortality causes for adult female elk. Notably, the population declined almost 70% from near previously published estimates of carrying capacity over 10 years, providing ideal conditions to test for density dependence. In contrast to predictions, we found only weak support for density dependence in adult survival and juvenile survival. We also found few differences between migrant and resident elk in adult or juvenile survival, though juvenile survival differences were biologically significant. Predation by humans and grizzly bears was density dependent, but similar between migratory strategies. Predation by wolves was the leading known cause of mortality, yet remained constant with declining elk density equally for both migrant and resident elk, indicating wolf predation was density‐independent. Instead of being strongly regulated by food or predation, we found adult female survival was driven by density‐independent predation and climatic factors. The few differences between migratory strategies suggest equivalent fitness payoffs for migrants and residents. This population is being limited by density‐independent predation leading to declines of both migratory strategies. Our results challenge classical predator–prey theory, and call for better integration between predator–prey and migration theory.  相似文献   

5.
In prior research, we found the way guppy life histories evolve in response to living in environments with a high or low risk of predation is consistent with life-history theory that assumes no density dependence. We later found that guppies from high-predation environments experience higher mortality rates than those from low-predation environments, but the increased risk was evenly distributed across all age/size classes. Life-history theory that assumes density-independent population growth predicts that life histories will not evolve under such circumstances, yet we have shown with field introduction experiments that they do evolve. However, theory that incorporates density regulation predicts this pattern of mortality can result in the patterns of life-history evolution we had observed. Here we report on density manipulation experiments performed in populations of guppies from low-predation environments to ask whether natural populations normally experience density regulation and, if so, to characterize the short-term demographic changes that underlie density regulation. Our experiments reveal that these populations are density regulated. Decreased density resulted in higher juvenile growth, decreased juvenile mortality rates, and increased reproductive investment by adult females. Increased density causes reduced offspring size, decreased fat storage by adult females, and increased adult mortality.  相似文献   

6.
Rudolf VH  Rödel MO 《Oecologia》2005,145(2):316-325
In many organisms reproductive success is strongly dependent on several breeding site characteristics, which often vary in space and time. Although we have a good understanding of how ovipositing organisms respond to single factors, we still have little information about how they respond under more complex natural conditions. We examined the oviposition behavior of a tree-hole breeding frog, Phrynobatrachus guineensis, with respect to abiotic and biotic oviposition site characteristics, including desiccation risk and the presence of conspecific offspring using both observation and experiments. Based on daily monitoring data, compiled from 69 natural oviposition sites during a complete reproductive season, we developed oviposition site-selection models. A model based on water presence, sediment depth and maximal possible water depth showed the best predictive performance and was transferable to the subsequent season. Field observations and experiments revealed that frogs could estimate water-holding capacity of sites and timed oviposition with respect to future water presence. Despite the negative effects on larval growth and the availability of sites without conspecifics, data suggest that ovipositing individuals are attracted to conspecific offspring because they serve as a cue for low predation risk. Our results imply that a sites potential for being used at least once for oviposition was determined by abiotic factors, whereas the relative use of breeding sites was determined by a response to conspecifics. Our study demonstrates the importance of including multiple biotic and abiotic factors in the analysis of oviposition site-selection.  相似文献   

7.
Pollination–seed predation mutualisms such as moth–yucca interactions are important model systems for studying mechanisms that limit exploitation when mutualistic partners have strong conflicts of interest. In many moth–yucca interactions, oviposition leads to the failure of some ovules to develop normally. Here, we demonstrate that moth eggs almost always perish if they are inside these oviposition‐induced ‘damage zones’ of developing fruit. Moreover, because more ovipositions result both in larger damage zones and in higher proportions of eggs within damage zones, this source of mortality is strongly density‐dependent. Therefore, mortality of eggs in oviposition‐induced damage zones may be an important process for limiting seed consumption and regulating moth densities in many moth–yucca mutualisms.  相似文献   

8.
The juvenile life stage is a crucial determinant of forest dynamics and a first indicator of changes to species' ranges under climate change. However, paucity of detailed re-measurement data of seedlings, saplings and small trees means that their demography is not well understood at large scales, and rarely represented in forest models in detail. In this study we quantify the effects of climate and density dependence on recruitment and juvenile growth and mortality rates of thirteen species measured in the Spanish Forest Inventory. Single-census sapling count data is used to constrain demographic parameters of a simple forest juvenile dynamics model based on the perfect plasticity approximation model (PPA) within a likelihood-free parameterisation method, Approximate Bayesian Computation. Our results highlight marked differences between species, and the important role of climate and stand structure, in controlling juvenile dynamics. Recruitment had a hump-shaped relationship with conspecific density, and for most species conspecific competition had a stronger negative effect than heterospecific competition. Mediterranean species showed on average higher mortality and lower growth rates than temperate species, and in low density stands recruitment and mortality rates were positively correlated. Under climate change our model predicted declines in recruitment rates for almost all species. Reliable predictive models of forest dynamics should include realistic representation of critical early life-stage processes and our approach demonstrates that existing coarse count data can be used to parameterise such models. Approximate Bayesian Computation may have wide application in many fields of ecology to unlock information about past processes from single survey observations.  相似文献   

9.
Is arthropod predation exclusively satiation‐driven?   总被引:4,自引:0,他引:4  
Functional response models differ in which factors limit predation (e.g. searching efficiency, prey handling time, digestion) and whether predation behaviour is governed by an internal physiological state (e.g. satiation). There is now much evidence that satiation is a key factor in understanding changes in foraging behaviour, and that many predators are effectively digestion limited. Here, we ask if predation in a predatory arthropod can be explained from satiation-driven behaviour alone, or if behaviour is also influenced by the density of prey other than via the effect of prey ingestion on satiation. To address this question a satiation-based predation model is formulated, for which parameters are estimated on the basis of observations on digestion rate, satiation-related prey searching rate and prey capture behaviour, basically under high prey density conditions. The model predictions are subsequently tested against longer term predation experiments carried out at high and low prey densities. Since satiation can easily be linked with egg production, these tests are carried out both for predation and oviposition.
The predator–prey systems under study consist of females of two predatory mite species ( Neoseiulus barkeri and N. cucumeris ) and the larvae of two thrips species ( Thrips tabaci and Frankliniella occidentalis ) as their prey. For N. barkeri foraging on T. tabaci , the model gives good predictions at both high (4 larvae cm−1) and low (0.1–1 larvae cm−2) prey densities. For N. cucumeris foraging on F. occidentalis , the predictions hold at the high prey density, but are too low at low prey densities. Thus our analysis indicates that we cannot fully explain density-dependent predation rates from satiation-driven behaviour alone. Different mechanisms are suggested on how prey density may affect foraging efficiency other than via satiation.  相似文献   

10.
We examined intra- and interspecific predation of adult females and immature stages of the generalist Neoseiulus californicus and the specialist Phytoseiulus persimilis. Adult females and immatures of both predators exhibited higher predation rates on larvae than on eggs and protonymphs. N. californicus fed more inter- than intraspecifically. Predation on P. persimilis by N. californicus was more severe than vice versa. P. persimilis had higher predation rates on conspecifics than heterospecifics and was more prone to cannibalism than N. californicus. When provided with phytoseiid prey, P. persimilis suffered higher mortality than N. californicus. When held without food, adult females and protonymphs of N. californicus survived longer than the corresponding stages of P. persimilis. N. californicus females were able to sustain oviposition when preying upon P. persimilis, whereas cannibalizing females did not lay eggs. Females of P. persimilis were not able to sustain oviposition, irrespective of con- or heterospecific prey. Immatures of both predators were able to reach adulthood when provided with either con- or heterospecifics. Juvenile development of N. californicus was shorter with heterospecific vs. conspecific larvae; mortality of P. persimilis immatures was less when feeding on conspecific vs. heterospecific larvae. Different behavioral pattern in intra- and interspecific predation are discussed in regard to their feeding types (generalist vs. specialist).  相似文献   

11.
Understanding how predators affect prey populations is a fundamental goal for ecologists and wildlife managers. A well-known example of regulation by predators is the predator pit, where two alternative stable states exist and prey can be held at a low density equilibrium by predation if they are unable to pass the threshold needed to attain a high density equilibrium. While empirical evidence for predator pits exists, deterministic models of predator–prey dynamics with realistic parameters suggest they should not occur in these systems. Because stochasticity can fundamentally change the dynamics of deterministic models, we investigated if incorporating stochasticity in predation rates would change the dynamics of deterministic models and allow predator pits to emerge. Based on realistic parameters from an elk–wolf system, we found predator pits were predicted only when stochasticity was included in the model. Predator pits emerged in systems with highly stochastic predation and high carrying capacities, but as carrying capacity decreased, low density equilibria with a high likelihood of extinction became more prevalent. We found that incorporating stochasticity is essential to fully understand alternative stable states in ecological systems, and due to the interaction between top–down and bottom–up effects on prey populations, habitat management and predator control could help prey to be resilient to predation stochasticity.  相似文献   

12.
Theory predicts that animals will have lower activity levels when either the risk of predation is high or the availability of resources in the environment is high. If encounter rates with predators are proportional to activity level, then we might expect predation mortality to be affected by resource availability and predator density independent of the number of effective predators. In a factorial experiment, we tested whether predation mortality of larval wood frogs, Rana sylvatica, caused by a single larval dragonfly, Anax junius, was affected by the presence of additional caged predators and elevated resource levels. Observations were consistent with predictions. The survival rate of the tadpoles increased when additional caged predators were present and when additional resources were provided. There was no significant interaction term between predator density and food concentration. Lower predation rates at higher predator density is a form of interference competition. Reduced activity of prey at higher predator density is a potential general mechanism for this widespread phenomenon. Higher predation rates at low food levels provides an indirect mechanism for density-dependent predation. When resources are depressed by elevated consumer densities, then the higher activity levels associated with low resource levels can lead to a positive association between consumer density and consumer mortality due to predation. These linkages between variation in behaviour and density-dependent processes argue that variation in behaviour may contribute to the dynamics of the populations. Because the capture rate of predators depends on the resources available to prey, the results also argue that models of food-web dynamics will have to incorporate adaptive variation in behaviour to make accurate predictions.  相似文献   

13.
Summary We relate causes of mortality of snowshoe hares to density of hares over an 8-year period that included a peak in numbers. We then use simulation modeling to examine whether these density-dependent relationships could produce changes in hare density similar to those observed in our study are in Yukon, Canada.Predation during winter was the largest source of mortality for snowshoe hares at Kluane, Yukon during 1978–84. There was a one-year lag in the response of winter predation mortality rate to hare density. There was a two-year lag in the response of winter mortality not caused by predators to hare density.A simple simulation model with density-dependent predation produced 8–11 year cycles only within a narrow range of parameters that are inconsistent with data from the Kluane region. However, a simulation model that predicted winter mortality rates using a delayed density-dependent numerical response and a Type II functional response by predators, produced 8–11 year cycles within the range of parameter values measured in our study. Yet another simulation model that predicted both summer and winter mortality rates using a delayed density-dependent numerical response and a Type II functional response by predators, did not produce 8–11 year cycles within the range of parameter values measured in our study. Lack of data on juvenile mortality may be one reason for this result.  相似文献   

14.
Summary We evaluated three methods for the analysis of functional response data by asking whether a given method could discriminate among functional responses and whether it could accurately identify regions of positive density-dependent predation. We evaluated comparative curve fitting with foraging models, linear least-squares analysis using the angular transformation, and logit analysis. Using data from nature and simulations, we found that the analyses of predation rates with the angular transformation and logit analysis were best at consistently determining the true functional response, i.e. the model used to generate simulated data. These methods also produced the most accurate estimates of the true regions of density dependence. Of these two methods, functional response data best fulfill the assumptions of logit analysis. Angularly transformed predation rates only approximate the assumptions of linear leastsquares analysis for predation rates between 0.1 and 0.9. Lack-of-fit statistics can reveal inadequate fit of a model to a data set where simple regression statistics might erroneously suggest a good match.  相似文献   

15.
The functional response is a critical link between consumer and resource dynamics, describing how a consumer's feeding rate varies with prey density. Functional response models often assume homogenous prey size and size-independent feeding rates. However, variation in prey size due to ontogeny and competition is ubiquitous, and predation rates are often size dependent. Thus, functional responses that ignore prey size may not effectively predict predation rates through ontogeny or in heterogeneous populations. Here, we use short-term response-surface experiments and statistical modeling to develop and test prey size-dependent functional responses for water bugs and dragonfly larvae feeding on red-eyed treefrog tadpoles. We then extend these models through simulations to predict mortality through time for growing prey. Both conventional and size-dependent functional response models predicted average overall mortality in short-term mixed-cohort experiments, but only the size-dependent models accurately captured how mortality was spread across sizes. As a result, simulations that extrapolated these results through prey ontogeny showed that differences in size-specific mortality are compounded as prey grow, causing predictions from conventional and size-dependent functional response models to diverge dramatically through time. Our results highlight the importance of incorporating prey size when modeling consumer-prey dynamics in size-structured, growing prey populations.  相似文献   

16.
Horning M  Mellish JA 《PloS one》2012,7(1):e30173
The endangered western stock of the Steller sea lion (Eumetopias jubatus)--the largest of the eared seals--has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates.  相似文献   

17.
The population of silvereyes Zosterops lateralis chlorocephalus , on Heron Island, Great Barrier Reef has been monitored accurately since 1965. Between 1979 and 1993, the breeding success of all birds was determined by monitoring nests. The population fluctuated between 225 and 483 individuals. Four cyclones led to substantial mortality. As this data set is long-term, has little observation error, and is from an effectively closed population, it provides an unusual opportunity to examine density dependence in reproduction or mortality. Using a stochastic logistic model, we found clear evidence of density dependence in adult population size. Logistic regression suggested that fledgling survival decreased with the numbers of birds attempting to breed. There was also some suggestion that adult survival might be density dependent. The fitted stochastic logistic model predicts negligible risks of extinction for this population, in contrast to the predictions of a published population viability analysis. Whilst our statistical model including density dependence may provide better predictions of the "usual" behaviour of a population than a population viability analysis, we suggest that caution should be exercised when statistically fitted models are used to predict the behaviour of the population at extremes, such as near extinction.  相似文献   

18.
Fitting nonlinear models to time-series is a technique of increasing importance in population ecology. In this article, we apply it to assess the importance of predator dependence in the predation process by comparing two alternative models of equal complexity (one with and one without predator dependence) to predator–prey time-series. Stochasticities in such data come from both observation error and process error. We consider how these errors must be taken into account in the fitting process, and we develop eight different model selection criteria. Applying these criteria to laboratory data on simple protozoan and arthropod predator–prey systems shows that little predator dependence is present, with one interesting exception. Field data are more ambiguous (either selection depends on the particular criterion or no significant differences can be detected), and we show that both models fit reasonably well. We conclude that, within our modeling framework, predator dependence is in general insignificant in simple systems in homogeneous environments. Relatively complex systems show significant predator dependence more often than simple ones but the data are also often inconclusive. The analysis of such systems should rely on several models to detect predictions that are sensitive to predator dependence and to direct further research if necessary. Received: July 13, 2000 / Accepted: September 25, 2001  相似文献   

19.
We studied the effects of predation and oviposition activity on reproductive success of a late-season moth, Epirrita autumnata by exposing adult females and eggs to predation in their natural habitat in two successive years. Daily survival rates of adult females ranged from 0.4 to 0.8, average being 0.7. Most predation occurred during nights and was caused by harvestmen and other invertebrate predators. Avian predation did not have an effect on adult survival rates, most likely because of the lateness of E. autumnata flight season. Eggs were also preyed upon by invertebrate predators, although a notable proportion of egg mortality was attributable to causes other than predation. Daily survival rates of eggs were more than 0.99. Using modeling based on empirical data on eclosion of female adults, their oviposition behavior and survival rates of adults and eggs, the daily survival rates were translated into population level consequences. Adult predation was estimated to decrease reproductive success of non-outbreaking E. autumnata by 60–85 percent and egg mortality by 20–40 percent. Predation on adult lepidopterans is a mortality factor potentially as relevant as predation in any other life history stage and thus, should not be ignored in studies of population regulation.  相似文献   

20.
ABSTRACT We used recent developments in theoretical population ecology to construct basic models of common loon (Gavia immer) demography and population dynamics. We parameterized these models using existing survival estimates and data from long-term monitoring of loon productivity and abundance. Our models include deterministic, 2-stage, density-independent matrix models, yielding population growth-rate estimates (λ) of 0.99 and 1.01 for intensively studied populations in our Wisconsin, USA, and New Hampshire, USA, study areas, respectively. Perturbation analysis of these models indicated that estimated growth rate is extremely sensitive to adult survival, as expected for this long-lived species. Also, we examined 20 years of count data for the 2 areas and evaluated support for a set of count-based models of population growth. We detected no temporal trend in Wisconsin, which would be consistent with fluctuation around an average equilibrium state but could also result from data limitations. For New Hampshire, the model set included varying formulations of density dependence and partitioning of stochasticity that were enabled by the annual sampling resolution. The best model for New Hampshire included density regulation of population growth and, along with the demographic analyses for both areas, provided insight into the possible importance of breeding habitat availability and the abundance of nonbreeding adults. Based on these results, we recommend that conservation organizations include nonbreeder abundance in common loon monitoring efforts and that additional emphasis be placed on identifying and managing human influences on adult loon survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号