首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Ets-1 controls osteoblast differentiation and bone development; however, its downstream mechanism of action in osteoblasts remains largely undetermined. CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts; however, the molecular mechanisms that control CCN2 induction are poorly understood. In this study, we investigated the role of Ets-1 for CCN2 induction by TGF-β1 in primary osteoblasts.

Results

We demonstrated that Ets-1 is expressed and induced by TGF-β1 treatment in osteoblasts, and that Ets-1 over-expression induces CCN2 protein expression and promoter activity at a level similar to TGF-β1 treatment alone. Additionally, we found that simultaneous Ets-1 over-expression and TGF-β1 treatment synergize to enhance CCN2 induction, and that CCN2 induction by TGF-β1 treatment was impaired using Ets-1 siRNA, demonstrating the requirement of Ets-1 for CCN2 induction by TGF-β1. Site-directed mutagenesis of eight putative Ets-1 motifs (EBE) in the CCN2 promoter demonstrated that specific EBE sites are required for CCN2 induction, and that mutation of EBE sites in closer proximity to TRE or SBE (two sites previously shown to regulate CCN2 induction by TGF-β1) had a greater effect on CCN2 induction, suggesting potential synergetic interaction among these sites for CCN2 induction. In addition, mutation of EBE sites prevented protein complex binding, and this protein complex formation was also inhibited by addition of Ets-1 antibody or Smad 3 antibody, demonstrating that protein binding to EBE motifs as a result of TGF-β1 treatment require synergy between Ets-1 and Smad 3.

Conclusions

This study demonstrates that Ets-1 is an essential downstream signaling component for CCN2 induction by TGF-β1 in osteoblasts, and that specific EBE sites in the CCN2 promoter are required for CCN2 promoter transactivation in osteoblasts.  相似文献   

3.
The matricellular protein connective tissue growth factor (CCN2) is considered a faithful marker of fibroblast activation in wound healing and in fibrosis. CCN2 is induced during activation of hepatic stellate cells (HSC). Here, we investigate the molecular basis of CCN2 gene expression in HSC. Fluoroscence activated cell sorting was used to investigate CCN2 expression in HSC in vivo in mice treated with CCl(4). CCN2 and TGF-beta mRNA expression were assessed by polymerase chain reaction as a function of culture-induced activation of HSC. CCN2 promoter/reporter constructs were used to map cis-acting elements required for basal and TGFbeta-induced CCN2 promoter activity. Real-time polymerase chain reaction analysis was used to further clarify signaling pathways required for CCN2 expression in HSC. CCl(4) administration in vivo increased CCN2 production by HSC. In vitro, expression of CCN2 and TGF-beta mRNA were concommitantly increased in mouse HSC between days 0 and 14 of culture. TGFbeta-induced CCN2 promoter activity required the Smad and Ets-1 elements in the CCN2 promoter and was reduced by TGFbeta type I receptor (ALK4/5/7) inhibition. CCN2 overexpression in activated HSC was ALK4/5/7-dependent. As CCN2 overexpression is a faithful marker of fibrogenesis, our data are consistent with the notion that signaling through TGFbeta type I receptors such as ALK5 contributes to the activation of HSC and hence ALK4/5/7 inhibition would be expected to be an appropriate treatment for liver fibrosis.  相似文献   

4.
5.
Cho IJ  Kim SH  Kim SG 《Cytokine》2006,35(5-6):284-294
Transforming growth factor-beta1 (TGFbeta1) induces plasminogen activator inhibitor-1 (PAI-1) as a major target protein. PAI-1 is associated with fibrosis, thrombosis, and metabolic disorders. TGFbeta1 induces PAI-1 via phosphorylation and nuclear translocation of Smads. Oltipraz inhibits TGFbeta1 expression and also regenerates cirrhotic liver. Nevertheless, whether oltipraz modulates TGFbeta1-mediated cell signaling is unclear. First, this study examined the effect of oltipraz on PAI-1 expression in cirrhotic rat liver. The cells immunochemically stained with anti-PAI-1 antibody accumulated around and within fibrous nodules in cirrhotic liver, which was notably decreased by oltipraz treatment. Next, whether oltipraz inhibits TGFbeta1-mediated Smads activation or Smad-mediated PAI-1 induction was determined in L929 fibroblasts. Oltipraz inhibited the ability of TGFbeta1 to induce PAI-1, as indicated by repression of TGFbeta1-mediated luciferase induction from the plasmid comprising the human PAI-1 promoter and of TGFbeta1-induced Smad-DNA-binding activity. TGFbeta1 induced nuclear transport of receptor-regulated Smad 2 and Smad 3, of which oltipraz selectively inhibited the transport and phosphorylation of Smad 3, thereby reducing formation of Smad 3/4 complex in the nucleus. In summary, oltipraz inhibits PAI-1 induction via a decrease in the formation of Smad 3/4 complex due to selective interruption of Smad 3 activation, indicating that oltipraz regulates the cellular responses downstream of ligand-activated TGFbeta1 receptor.  相似文献   

6.
7.
8.
9.
Our previous results have shown that transforming growth factor beta (TGFbeta) rapidly activates Ras, as well as both ERKs and SAPKs. In order to address the biological significance of the activation of these pathways by TGFbeta, here we examined the role of the Ras/MAPK pathways and the Smads in TGFbeta(3) induction of TGFbeta(1) expression in untransformed lung and intestinal epithelial cells. Expression of either a dominant-negative mutant of Ras (RasN17) or a dominant-negative mutant of MKK4 (DN MKK4), or addition of the MEK1 inhibitor PD98059, inhibited the ability of TGFbeta(3) to induce AP-1 complex formation at the TGFbeta(1) promoter, and the subsequent induction of TGFbeta(1) mRNA. The primary components present in this TGFbeta(3)-inducible AP-1 complex at the TGFbeta(1) promoter were JunD and Fra-2, although c-Jun and FosB were also involved. Furthermore, deletion of the AP-1 site in the TGFbeta(1) promoter or addition of PD98059 inhibited the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Collectively, our data demonstrate that TGFbeta(3) induction of TGFbeta(1) is mediated through a signaling cascade consisting of Ras, the MAPKKs MKK4 and MEK1, the MAPKs SAPKs and ERKs, and the specific AP-1 proteins Fra-2 and JunD. Although Smad3 and Smad4 were not detectable in TGFbeta(3)-inducible AP-1 complexes at the TGFbeta(1) promoter, stable expression of dominant-negative Smad3 could significantly inhibit the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Transient expression of dominant-negative Smad4 also inhibited the ability of TGFbeta(3) to transactivate the TGFbeta(1) promoter. Thus, although the Ras/MAPK pathways are essential for TGFbeta(3) induction of TGFbeta(1), Smads may only contribute to this biological response in an indirect manner.  相似文献   

10.
Transforming growth factor beta (TGFbeta) plays a dual role in oncogenesis, acting as both a tumor suppressor and a tumor promoter. These disparate processes of suppression and promotion are mediated primarily by Smad and non-Smad signaling, respectively. A central issue in understanding the role of TGFbeta in the progression of epithelial cancers is the elucidation of the mechanisms underlying activation of non-Smad signaling cascades. Because the potent lipid mediator sphingosine-1-phosphate (S1P) has been shown to transactivate the TGFbeta receptor and activate Smad3, we examined its role in TGFbeta activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and promotion of migration and invasion of esophageal cancer cells. Both S1P and TGFbeta activate ERK1/2, but only TGFbeta activates Smad3. Both ligands promoted ERK1/2-dependent migration and invasion. Furthermore, TGFbeta rapidly increased S1P, which was required for TGFbeta-induced ERK1/2 activation, as well as migration and invasion, since downregulation of sphingosine kinases, the enzymes that produce S1P, inhibited these responses. Finally, our data demonstrate that TGFbeta activation of ERK1/2, as well as induction of migration and invasion, is mediated at least in part by ligation of the S1P receptor, S1PR2. Thus, these studies provide the first evidence that TGFbeta activation of sphingosine kinases and formation of S1P contribute to non-Smad signaling and could be important for progression of esophageal cancer.  相似文献   

11.
12.
13.
Connective tissue growth factor (CTGF, CCN2) is induced in response to TGFbeta in fibroblasts. In this report, we show that C2 ceramide reduced the ability of TGFbeta to induce CCN2 protein, mRNA and promoter activity in fibroblasts. C2 ceramide reduced the ability of TGFbeta to induce the generic Smad responsive promoter/reporter construct SBE-luciferase. These results suggest that C2 ceramide reduces the action of TGFbeta in fibroblasts via Smad antagonism.  相似文献   

14.
15.
The calcineurin inhibitor (CNI)-induced renal fibrosis is attributed to an exaggerated deposition of extracellular matrix, which is mainly due to an increased expression of TGFbeta. Herein we demonstrate that the CNI cyclosporin A and tacrolimus (FK506), independent of TGFbeta synthesis, rapidly activate TGFbeta/Smad signaling in cultured mesangial cells and in whole kidney samples from CNI-treated rats. By EMSA, we demonstrate increased DNA binding of Smad-2, -3, and -4 to a cognate Smad-binding promoter element (SBE) accompanied by CNI-triggered activation of Smad-dependent expression of tissue inhibitor of metalloprotease-1 (TIMP-1) and connective tissue growth factor. Using an activin receptor-like kinase-5 (ALK-5) inhibitor and by small interfering RNA we depict a critical involvement of both types of TGFbeta receptors in CNI-triggered Smad signaling and fibrogenic gene expression, respectively. Mechanistically, CNI cause a rapid activation of latent TGFbeta, which is prevented in the presence of the antioxidant N-acetyl cysteine. A convergent activation of p38 MAPK is indicated by the partial blockade of CNI-induced Smad-2 activation by SB203580; conversely, both TGFbeta-RII and TGFbeta are critically involved in p38 MAPK activation by CNI. Activation of both signaling pathways is similarly triggered by reactive oxygen species. Finally, we show that neutralization of TGFbeta markedly reduced the CNI-dependent Smad activation in vitro and in vivo. Collectively, this study demonstrates that CNI via reactive oxygen species generation activate latent TGFbeta and thereby initiate the canonical Smad pathway by simultaneously activating p38 MAPK, which both synergistically induce Smad-driven gene expression.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号