首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specimens from two freshwater populations of the ninespine stickleback Pungitius pungitius in Poland showed morphologically differentiated sex chromosomes. A heteromorphic pair of chromosomes appeared only in male diploid cells. The Y chromosome was the largest chromosome in the P. pungitius karyotype.  相似文献   

2.
The C-banding pattern and the size and location of the nucleolar organizer regions (NORs) are described for the first time in Brazilian populations of Anopheles (Nyssorhynchus) albitarsis sensu lato. C-banding revealed variation in the size of the centromeric heterochromatic blocks in autosomal chromosomes and in the acrocentric (X) and puntiform (Y) sex chromosomes. Fluorescence in situ hybridization showed that the NORs were located in the pericentromeric region of the sex (XX/XY) chromosomes and that this coincided with the number and location of centromeric constitutive heterochromatin blocks previously revealed by C-banding. The NORs varied in size among the homologues of the three populations. These findings of the populations studied support the hypothesis that the stability of NORs in the A. albitarsis complex is characterized by the presence of clustered and conserved sites in a unique pair of chromosomes.  相似文献   

3.
Four populations of Serrapinnus notomelas and one population of Serrapinnus sp.1, both belonging to the subfamily Cheirodontinae, were analyzed by Giemsa and silver nitrate impregnation techniques. We found 2n = 52 chromosomes for all populations, with interspecific differences in the karyotype formula; S. notomelas showed 16 m + 22 sm + 10 st + 4a, with fundamental number (FN) = 100 for males, and 16 m + 23 sm + 10 st + 3a, with FN = 101 for females. Serrapinnus sp.1 had 8m + 16 sm + 4 st + 24 a, with FN = 80 for males, and 8m + 15 sm + 4 st + 25 a, with FN = 79 for females. The difference in FN for the two sexes is due to a pair of heteromorphic chromosomes in the females of both species, which characterizes a ZZ/ZW-type mechanism of chromosome sexual determination. Interspecies differences were also found in nucleolus organizer regions (NORs). A simple NOR system was detected in three of four S. notomelas populations, while Serrapinnus sp.1 had two chromosome pairs with NOR. Although S. notomelas and Serrapinnus sp.1 have the same diploid number, differences in the karyotype structure indicate that these are different species. Apparently there was pericentric inversion during the karyotype evolution of these species.  相似文献   

4.
To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis, we compared the relative roles of sex chromosome conservation versus turnover of sex‐determining mechanisms. We used model‐based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an X‐linked bacterial artificial chromosome (BAC) and quantitative PCR of X‐linked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with long‐term conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades.  相似文献   

5.
Zhu B  Dong Y  Gao J  Li P  Pang Y  Liu H  Chen H 《Hereditas》2006,143(2006):130-137
Here we describe our studies on Microtus mandarinus faeceus of Jiangyan in Jiangsu province of China. By karyotype and G-banding analysis we have found variation in chromosome number and polymorphisms of the X chromosome and the second pair of autosomes of the subspecies. Chromosome number of the subspecies is 2n=47-50. The subspecies has three kinds of chromosomal sex: XX, XO and XY, among which one of the X chromosomes is subtelocentric (X(ST)) and the other is metacentric (X(M)). After comparing karyotypes of different subspecies, we found the specific cytogenetic characteristics of Microtus mandarinus, that is they have three kinds of chromosomal sex: XX, XO and XY; X chromosomes are heteromorphic; the chromosome number of female individuals are one less than male individuals; chromosome number of XX individuals are equal to that of XO ones. We hypothesize that Robertsonian translocation is the main reason of the polymorphism of the second pair of autosomes and variety of chromosome number, and it also causes the chromosome number evolution in different subspecies of Microtus mandarinus.  相似文献   

6.
McAllister BF 《Genetics》2003,165(3):1317-1328
Sex chromosomes originate from pairs of autosomes that acquire controlling genes in the sex-determining cascade. Universal mechanisms apparently influence the evolution of sex chromosomes, because this chromosomal pair is characteristically heteromorphic in a broad range of organisms. To examine the pattern of initial differentiation between sex chromosomes, sequence analyses were performed on a pair of newly formed sex chromosomes in Drosophila americana. This species has neo-sex chromosomes as a result of a centromeric fusion between the X chromosome and an autosome. Sequences were analyzed from the Alcohol dehydrogenase (Adh), big brain (bib), and timeless (tim) gene regions, which represent separate positions along this pair of neo-sex chromosomes. In the northwestern range of the species, the bib and Adh regions exhibit significant sequence differentiation for neo-X chromosomes relative to neo-Y chromosomes from the same geographic region and other chromosomal populations of D. americana. Furthermore, a nucleotide site defining a common haplotype in bib is shown to be associated with a paracentric inversion [In(4)ab] on the neo-X chromosome, and this inversion suppresses recombination between neo-X and neo-Y chromosomes. These observations are consistent with the inversion acting as a recombination modifier that suppresses exchange between these neo-sex chromosomes, as predicted by models of sex chromosome evolution.  相似文献   

7.
A new karyotype for blind mole rats was recorded in Tunceli province in Eastern Turkey. The karyotype contained 44 chromosomes, including 13 biarmed pairs, 7 acrocentric pairs, and one heteromorphic pair with a submetacentric and an acrocentric homologue in the autosomal complement (FNa=69). The X chromosome was submetacentric and the Y chromosome medium-sized subtelocentric (FN=73). Distinct dark centromeric C-bands were observed on most of the biarmed and three pairs of the acrocentric autosomes. The NORs were detected on short arms of three subtelocentric pairs and one acrocentric pair of autosomes. The diploid number of chromosomes and the karyotype characteristics observed are obviously unique among hitherto studied populations of blind mole rats and the complement can be evaluated as a new chromosome race of Nannospalax xanthodon. The distribution ranges of individual chromosome races of the species recorded in Eastern Anatolia are revised and possible interracial hybridization is discussed in respect of the finding of a new race.  相似文献   

8.
A new look at the evolution of avian sex chromosomes   总被引:1,自引:0,他引:1  
Birds have a ubiquitous, female heterogametic, ZW sex chromosome system. The current model suggests that the Z chromosome and its degraded partner, the W chromosome, evolved from an ancestral pair of autosomes independently from the mammalian XY male heteromorphic sex chromosomes--which are similar in size, but not gene content (Graves, 1995; Fridolfsson et al., 1998). Furthermore the degradation of the W has been proposed to be progressive, with the basal clade of birds (the ratites) possessing virtually homomorphic sex chromosomes and the more recently derived birds (the carinates) possessing highly heteromorphic sex chromosomes (Ohno, 1967; Solari, 1993). Recent findings have suggested an alternative to independent evolution of bird and mammal chromosomes, in which an XY system took over directly from an ancestral ZW system. Here we examine recent research into avian sex chromosomes and offer alternative suggestions as to their evolution.  相似文献   

9.
Heteromorphisms between sex chromosomes are rarely found in anurans and sex chromosome differentiation is considered to be a set of recent recurrent events in the evolutionary history of this group. This paper describes for the first time heteromorphic sex chromosomes Z and W in the leiuperid genus Physalaemus. They were found in P. ephippifer, a species of the P. cuvieri group, and corresponded to the eighth pair of its karyotype. The W chromosome differed from the Z chromosome by the presence of an additional segment in the short arm, composed of a distal NOR and an adjacent terminal DAPI-positive C-band. The identification of this sex chromosome pair may help in future investigations into the sex determining genes in the genus Physalaemus.  相似文献   

10.
Much of our current state of knowledge concerning sex chromosome evolution is based on a handful of ‘exceptional’ taxa with heteromorphic sex chromosomes. However, classifying the sex chromosome systems of additional species lacking easily identifiable, heteromorphic sex chromosomes is indispensable if we wish to fully understand the genesis, degeneration and turnover of vertebrate sex chromosomes. Squamate reptiles (lizards and snakes) are a potential model clade for studying sex chromosome evolution as they exhibit a suite of sex‐determining modes yet most species lack heteromorphic sex chromosomes. Only three (of 203) chameleon species have identified sex chromosome systems (all with female heterogamety, ZZ/ZW). This study uses a recently developed method to identify sex‐specific genetic markers from restriction site‐associated DNA sequence (RADseq) data, which enables the identification of sex chromosome systems in species lacking heteromorphic sex chromosomes. We used RADseq and subsequent PCR validation to identify an XX/XY sex chromosome system in the veiled chameleon (Chamaeleo calyptratus), revealing a novel transition in sex chromosome systems within the Chamaeleonidae. The sex‐specific genetic markers identified here will be essential in research focused on sex‐specific, comparative, functional and developmental evolutionary questions, further promoting C. calyptratus’ utility as an emerging model organism.  相似文献   

11.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

12.
Roslik GV  Kriukov AP 《Genetika》2001,37(7):962-973
Karyotypes were studied in the hooded and carrion crows, their naturally occurred hybrids, the jungle crow, the azure-winged magpie (2n = 80 in all aforementioned birds), and the magpie (2n = 82). Corvine birds of Primorskii Krai were karyotyped for the first time. In addition to the similarity in the diploid chromosome sets, corvine birds were shown to have a similar structure of karyotype: in all studied birds, 14 macrochromosomes (Mchs) classified into three groups according to their size were detected. By karyotype structure, birds belonging to the same genus are similar. Some intergeneric differences are due to a change in the position of centromeres of the largest and sex chromosomes. Karyotypes of interspecific hybrids of crows are remarkable for the presence of heteromorphic (t/st) chromosome pair 2 in some individuals, which apparently does not affect their fecundity. Using differential C-banding, the sex chromosome W in female magpies was identified. In addition, heteromorphism was detected in C-bands of homologs of Mch pair 4 in the hooded crow. In the jungle crow, the azure-winged magpie, and the magpie, bright QH-bands and numerous G-bands were detected on Mchs and on some microchromosomes only. Active Ag-NOR-bands were detected on one macrochromosome pair in the magpie. In all, the karyotype structure of corvine birds is comparable to the basic structural scheme of the karyotype in the order Passeriformes, which confirms the concept of conservatism of the avian karyotype.  相似文献   

13.
本文首次报道虫草蝠蛾(鳞翅目,蝙蝠蛾科,蝠蛾属)的有丝分裂染色体核型。应用醋酸分离和热干燥技术,研究了云南的两种虫草蝠蛾Hepialus zhayuensis Chu et Wang和Hepialus sp.的有丝分裂染色体,它们的染色体数目为2n=64。在有丝分裂的早中期染色体上清晰地呈现出散漫着丝粒。然而,分裂中期和较晚的中期阶段,每条染色体都具显著的初级着丝粒(即主缢痕)。它们的雄性中期核型中都有一对典型的异形性染色体,X染色体着色稍淡,且都具中或亚中着丝粒;Y染色体比X染色体长,染色很深。 在雄性的分裂间期细胞中,观察到异固缩性染色质体,此异固缩体是Y染色体。  相似文献   

14.
Cytogenetic analysis in three Rineloricaria pentamaculata populations revealed diploid number 2n = 56 chromosomes, karyotype formula 8m/sm + 48st/a and FN = 64. Owing to the presence of the heteromorphic chromosome pair with a big submetacentric chromosome and a small acrocentric one in both males and females, 42.9% of specimens in the Tauá Stream population had the karyotype formula 9m/sm + 47st/a and FN = 65. Analysis of the nucleolus-organizing region by Ag-NOR and FISH techniques showed a single NOR system at pair 5 for R. pentamaculata populations of the Keller River and the Tauá Stream. However, specimens of populations of the Tatupeba Stream had multiple NOR systems at pairs 5 and 8. A constitutive heterochromatin pattern in R. pentamaculata is mainly distributed in the pericentromeric and telomeric regions with interstitial markers in certain chromosomes. Heterochromatin is located in the telomeric and centromeric positions of the acrocentric chromosome in the heteromorphic pair of the Tauá Stream population. In the submetacentric chromosome the markings are located in the telomeric (short arm), pericentomeric and interstitial (long arm) positions. The origins of polymorphisms are discussed.  相似文献   

15.
The European cherry fruit fly, Rhagoletis cerasi, is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the "weak points", and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.  相似文献   

16.
毛冠鹿种内异染色质变化与染色体多态   总被引:1,自引:0,他引:1  
采用原代和传代培养方法对8头毛冠鹿(Elaphodus cephalophus)的皮肤细胞进行了染色体研究,发现了一种核型与以前所报道的几种核型不一致,确定为一新核型。在该核型中,染色体众数2n=47,2条X染色体异型,一条为端着丝粒,另一条为近端着丝粒。C-带显示该核型中异染色质除了分布在2条X染色体长臂中之外,在第一对大的端着丝粒染色体中的一条近着丝粒区出现一异染色质“柄”。结合C-带及薄层扫描结果对毛冠鹿种内常染色体、性染色体中异染色质的含量和分布与染色体多态的关系进行了探讨。  相似文献   

17.
Karyotypes were studied in the hooded and carrion crows, their naturally occurred hybrids, the jungle crow, the azure-winged magpie (2n= 80 in all aforementioned birds), and the magpie (2n= 82). Corvine birds of Primorskii Krai were karyotyped for the first time. In addition to the similarity in the diploid chromosome sets, corvine birds were shown to have a similar structure of karyotype: in all studied birds, 14 macrochromosomes (Mchs) classified into three groups according to their size were detected. By karyotype structure, birds belonging to the same genus are similar. Some intergeneric differences are due to a change in the position of centromeres of the largest and sex chromosomes. Karyotypes of interspecific hybrids of crows are remarkable for the presence of heteromorphic (t/st) chromosome pair 2 in some individuals, which apparently does not affect their fecundity. Using differential C-banding, the sex chromosome W in female magpies was identified. In addition, heteromorphism was detected in C-bands of homologs of Mch pair 4 in the hooded crow. In the jungle crow, the azure-winged magpie, and the magpie, bright QH-bands and numerous G-bands were detected on Mchs and on some microchromosomes only. Active Ag-NOR-bands were detected on one macrochromosome pair in the magpie. In all, the karyotype structure of corvine birds is comparable to the basic structural scheme of the karyotype in the order Passeriformes, which confirms the concept of conservatism of the avian karyotype.  相似文献   

18.
Ross JA  Peichel CL 《Genetics》2008,179(4):2173-2182
To identify the processes shaping vertebrate sex chromosomes during the early stages of their evolution, it is necessary to study systems in which genetic sex determination was recently acquired. Previous cytogenetic studies suggested that threespine stickleback fish (Gasterosteus aculeatus) do not have a heteromorphic sex chromosome pair, although recent genetic studies found evidence of an XY genetic sex-determination system. Using fluorescence in situ hybridization (FISH), we report that the threespine stickleback Y chromosome is heteromorphic and has suffered both inversions and deletion. Using the FISH data, we reconstruct the rearrangements that have led to the current physical state of the threespine stickleback Y chromosome. These data demonstrate that the threespine Y is more degenerate than previously thought, suggesting that the process of sex chromosome evolution can occur rapidly following acquisition of a sex-determining region.  相似文献   

19.
The differentiation of sex chromosomes is thought to be interrupted by relatively frequent sex chromosome turnover and/or occasional recombination between sex chromosomes (fountain-of-youth model) in some vertebrate groups as fishes, amphibians, and lizards. As a result, we observe the prevalence of homomorphic sex chromosomes in these groups. Here, we provide evidence for the loss of sex chromosome heteromorphism in the Amazonian frogs of the genus Engystomops, which harbors an intriguing history of sex chromosome evolution. In this species complex composed of two named species, two confirmed unnamed species, and up to three unconfirmed species, highly divergent karyotypes are present, and heteromorphic X and Y chromosomes were previously found in two species. We describe the karyotype of a lineage estimated to be the sister of all remaining Amazonian Engystomops (named Engystomops sp.) and perform chromosome painting techniques using one probe for the Y chromosome and one probe for the non-centromeric heterochromatic bands of the X chromosome of E. freibergi to compare three Engystomops karyotypes. The Y probe detected the Y chromosomes of E. freibergi and E. petersi and one homolog of chromosome pair 11 of Engystomops sp., suggesting their common evolutionary origin. The X probe showed no interspecific hybridization, revealing that X chromosome heterochromatin is strongly divergent among the studied species. In the light of the phylogenetic relationships, our data suggest that sex chromosome heteromorphism may have occurred early in the evolution of the Amazonian Engystomops and have been lost in two unnamed but confirmed candidate species.Subject terms: Cytogenetics, Evolutionary genetics  相似文献   

20.
Seven Tilapiine species from three generaTilapia, Sarotherodon, andOreochromis were cytogenetically studied for chromosome number, chromosome morphology, and DNA content. The chromosome number 2n=44 was the same in all seven species. Arm number (NF) differences indicate the possible role of pericentric invasions in the karyotypic evolution of these species. C-banding of metaphase chromosomes shows that heterochromatin is localised around the centromere in all species ofOreochromis and Sarotherodon butT. zillii has more heterochromatin with six chromosomes having completely C-positive short arms. DNA values vary between 0.84 pq forO. macrochir and 1.21 pq forO. aureus. No heteromorphic sex chromosome pair could be found in any species. These findings suggest that karyotypic evolution has occurred but does not appear to be associated with speciation in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号