首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The question of why maternal stress influences offspring phenotype is of significant interest to evolutionary physiologists. Although embryonic exposure to maternally derived glucocorticoids (i.e., corticosterone) generally reduces offspring quality, effects may adaptively match maternal quality with offspring demand. We present results from an interannual field experiment in European starlings (Sturnus vulgaris) designed explicitly to examine the fitness consequences of exposing offspring to maternally derived stress hormones. We combined a manipulation of yolk corticosterone (yolk injections) with a manipulation of maternal chick-rearing ability (feather clipping of mothers) to quantify the adaptive value of corticosterone-induced offspring phenotypes in relation to maternal quality. We then examined how corticosterone-induced "matching" within this current reproductive attempt affected future fecundity and maternal survival. First, our results provide support that low-quality mothers transferring elevated corticosterone to eggs invest in daughters as predicted by sex allocation theory. Second, corticosterone-mediated sex-biased investment resulted in rapid male-biased mortality resulting in brood reduction, which provided a better match between maternal quality and brood demand. Third, corticosterone-mediated matching reduced investment in current reproduction for low-quality mothers, resulting in fitness gains through increased survival and future fecundity. Results indicate that the transfer of stress hormones to eggs by low-quality mothers can be adaptive since corticosterone-mediated sex-biased investment matches the quality of a mother to offspring demand, ultimately increasing maternal fitness. Our results also indicate that the branding of the proximate effects of maternal glucocorticoids on offspring as negative ignores the possibility that short-term phenotypic changes may actually increase maternal fitness.  相似文献   

2.
Maternal glucocorticoids are known to affect offspring phenotype in numerous vertebrate taxa. In birds, the maternal transfer of corticosterone to eggs was recently proposed as a hormonal mechanism by which offspring phenotype is matched to the relative quality of the maternal environment. However, current hypotheses lack supporting information on both intra- and inter-clutch variation in yolk corticosterone for wild birds. As such, we examined variation in yolk corticosterone levels in a wild population of European starlings (Sturnus vulgaris). Maternal condition, clutch size and nesting density were all negatively related to yolk corticosterone deposition; females with high condition indices, those laying larger clutches and those nesting in high-density associations deposited lower amounts of the hormone into eggs than those with low condition indices, laying small clutches and nesting in isolation. Alternatively, we found no effects of maternal age or human disturbance on yolk corticosterone deposition. Intra-clutch variation of yolk corticosterone was significant, with levels increasing across the laying sequence in all clutch sizes examined, with the difference between first and last-laid eggs being greater in large versus small clutches. Given the reported effects of yolk corticosterone on offspring size and growth, intra-clutch variation in yolk corticosterone has the potential to alter the competitive environment within a brood. Furthermore, our results indicate that variation in yolk corticosterone can originate from variation in both the mother's quality as well as the quality of her breeding environment. The presence of inter-female variation in particular is an important pre-requisite in testing whether the exposure of offspring to maternally-derived corticosterone is a mechanistic link between offspring phenotypic plasticity and maternal quality.  相似文献   

3.
There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms.  相似文献   

4.
Maternal effects affect offspring phenotype and fitness. However, the roles of offspring sex-specific sensitivity to maternal glucocorticoids and sex-biased maternal investment remain unclear. It is also uncertain whether telomere length (a marker associated with lifespan) depends on early growth in a sex-specific manner. We assessed whether maternal traits including corticosterone (CORT; the main avian glucocorticoid) and in ovo growth rate are sex-specifically related to offspring CORT exposure, relative telomere length (RTL) and body condition in eiders (Somateria mollissima). We measured feather CORT (fCORT), RTL and body condition of newly hatched ducklings, and growth rate in ovo was expressed as tarsus length at hatching per incubation duration. Maternal traits included baseline plasma CORT, RTL, body condition and breeding experience. We found that fCORT was negatively associated with growth rate in daughters, while it showed a positive association in sons. Lower offspring fCORT was associated with higher maternal baseline plasma CORT, and fCORT was higher in larger clutches and in those hatching later. The RTL of daughters was negatively associated with maternal RTL, whereas that of males was nearly independent of maternal RTL. Higher fCORT in ovo was associated with longer RTL at hatching in both sexes. Duckling body condition was mainly explained by egg weight, and sons had a slightly lower body condition. Our correlational results suggest that maternal effects may have heterogeneous and even diametrically opposed effects between the sexes during early development. Our findings also challenge the view that prenatal CORT exposure is invariably associated with shorter telomeres.  相似文献   

5.
1. Maternal carotenoids in the egg yolk have been hypothesized to promote maturation of the immune system and protect against free radical damages. Depending on availability, mothers may thus influence offspring quality by depositing variable amounts of carotenoids into the eggs. Sex allocation theory predicts that in good quality environments, females should invest into offspring of the sex that will provide larger fitness return, generally males. 2. In a field experiment we tested whether female great tits bias their investment towards males when carotenoid availability is increased, and whether male offspring of carotenoid-supplemented mothers show higher body condition. We partially cross-fostered hatchlings to disentangle maternal effects from post-hatching effects, and manipulated hen flea Ceratophyllus gallinae infestation to investigate the relationship between carotenoid availability and resistance to ectoparasites. 3. As predicted, we found that carotenoid-supplemented mothers produced males that were heavier than their sisters at hatching, while the reverse was true for control mothers. This suggests that carotenoid availability during egg production affects male and female hatchlings differentially, possibly via a differential allocation to male and female eggs. 4. A main effect of maternal supplementation became visible 14 days after hatching when nestlings hatched from eggs laid by carotenoid-supplemented mothers had gained significantly more mass than control nestlings. Independently of the carotenoid treatment, fleas impaired mass gain of nestlings during the first 9 days in large broods only and reduced tarsus length of male nestlings at an age of 14 days, suggesting a cost to mount a defence against parasites. 5. Overall, our results suggest that pre-laying availability of carotenoids affects nestling condition in a sex-specific way with potentially longer-lasting effects on offspring fitness.  相似文献   

6.
We investigated in the black-headed gull whether female deposition of antioxidants and immunoglobulins (enhancing early immune function), and testosterone (suppressing immune function and increasing early competitive skills) correlate suggesting that evolution has favoured the mutual adjustment of different pathways for maternal effects. We also took egg mass, the position of the egg in the laying sequence and offspring sex into account, as these affect offspring survival. Yolk antioxidant and immunoglobulin concentrations decreased across the laying order, while yolk testosterone concentrations increased. This may substantially handicap the immune defence of last-hatched chicks. The decrease in antioxidant levels was greater when mothers had a low body mass and when the increase in testosterone concentrations was relatively large. This suggests that female black-headed gulls are constrained in the deposition of antioxidants in last-laid eggs and compensate for this by enhanced testosterone deposition. The latter may be adaptive since it re-allocates the chick's investment from costly immune function to growth and competitive skills, necessary to overcome the consequences of hatching late from an egg of reduced quality.  相似文献   

7.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination.  相似文献   

8.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

9.
Sex ratio of progeny should be balanced if costs and benefits of rearing sons and daughters are equal. However, shifts in sex ratio have been demonstrated across bird species and it was suggested that females are able to adjust the primary sex ratio. One possible mechanism is the glucocorticoid corticosterone which rises under stressful conditions and can be deposited into egg yolk by mothers. We analysed primary sex ratio of common terns Sterna hirundo from 2006 to 2008 and related it to maternal baseline corticosterone level, laying date and year. Therefore, we took 101 blood samples of 71 breeding females via blood sucking bugs, a method with negligible stress for the birds. Sex ratio did not differ from parity in any of the analysed years, which were characterized by poor food availability and breeding success. Only within 1 year there was a tendency for more females in the last hatched chick. Neither corticosterone level nor laying date or year showed an influence on hatching sex ratio. The negative result concerning primary sex ratio and maternal baseline corticosterone level might suggest conditions to be good enough for mothers to prevent them from depositing high levels of corticosterone into eggs.  相似文献   

10.
In birds, female egg allocation patterns have a strong influence in offspring development and differential investment in egg size and composition has been shown to respond to male attractiveness. In this study we experimentally manipulated the perceived attractiveness of male starlings Sturnus unicolor by increasing the amount of green material in some nests (a male courtship display in this species). We predicted that, if female investment before laying is related to male attractiveness, experimental females would increase their reproductive investment in response to the addition of plants in their nests when compared to control females. We found that our manipulation caused variations in female reproductive investment in a way that seems to influence offspring quantity but not offspring quality: Females laid larger clutch sizes but not larger eggs when green plant material was added. However, yolk androgens contents were not related to the experimental manipulation. Contrary to expectations, females breeding in experimental nests laid eggs with smaller amounts of eggshell pigments. Interestingly, we found that eggs laid later in the sequence had higher testosterone levels and showed more intense egg colouration than eggs laid earlier in the sequence. These differences at the within-clutch level suggest that selection has favoured compensatory strategies for hatching asynchrony. Alternatively, since nest sabotages by other females are most common at the beginning of laying, this could be seen as female strategy to minimise losses due to nest sabotages. As far as we know, this is the first study to show that an external egg characteristic such as blue-green colouration reflects yolk androgen concentration.  相似文献   

11.
Predictions from Trivers & Willard's (1973, Science, 179, 90-92) hypothesis of sex-biased maternal investment in polygynous species do not apply well to species where mothers produce more than one offspring per reproductive attempt. First, as litter size increases, the benefits to the mother of adjusting sex ratio decrease because (1) she could benefit more by adjusting litter size and (2) sex differences in reproductive potential are negatively related to litter size. Second, testing sex-biased investment in these species requires predictions about the simultaneous adjustment of sex ratio and litter size. The wild boar, Sus scrofa, although polygynous, produces large litters. Here we present data for 58 litters from a free-ranging wild boar population in central Spain. Maternal expenditure per individual offspring, as measured by piglet weight, was higher for male than female fetuses. In more than 81% of cases the heaviest fetus in the litter was a male regardless of the quality of the mother; this might have influenced his ranking within the 'teat order' and consequently his development and survival. Mother quality (size and weight) appeared to be related to litter size but not to the sex ratio of the litter. However, it was highly related to a variable that combined the effects of litter size and sex ratio within the litter, thus supporting Williams' (1979, Proceedings of the Royal Society of London, Series B, 205, 567-580) hypothesis that mothers should adjust both litter size and offspring sex. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

12.
Trans-generational antibody transfer constitutes an important mechanism by which mothers may enhance offspring resistance to pathogens. Thus, differential antibody deposition may potentially allow a female to differentiate offspring performance. Here, we examined whether maternal immunization with sheep red blood cells (SRBC) prior to egg laying affects sex-specific yolk antibody transfer and sex-specific offspring performance in zebra finches (Taeniopygia guttata). We showed that immunized mothers deposit anti-SRBC antibodies into the eggs depending on embryo sex and laying order, and that maternal exposure to SRBC positively affects the body size of female, but not male offspring. This is the first study reporting sex-specific consequences of maternal immunization on offspring performance, and suggests that antibody transfer may constitute an adaptive mechanism of maternal favouritism.  相似文献   

13.
Male and female offspring can differ in their susceptibility to pre-natal (e.g. egg quality) and post-natal (e.g. sib–sib competition) conditions, and parents can therefore increase their individual fitness by adjusting these maternal effects according to offspring sex. In birds, egg mass and laying/hatching order are the main determinants of offspring viability, but these effects can act differently on each sex. In a previous study, relatively large last-laid (c-)eggs of yellow-legged gulls (Larus michahellis) were more likely to carry a female embryo. This suggests compensatory allocation of maternal resources to daughters from c-eggs, which suffer reduced viability. In the present study, we supplemented yellow-legged gulls with food during the laying period to experimentally test whether their nutritional conditions were responsible for the observed covariation between c-egg sex and mass. As predicted, food supplementation enhanced female c-eggs'' mass more than that of male c-eggs. Thus, this experiment indicates that mothers strategically allocated their resources to c-eggs, possibly in order to compensate for the larger susceptibility of daughters to hatching (and laying) order. The results also suggested that mothers decided on resource allocation depending on the sex of already ovulated c-eggs, rather than ovulating ova of either sex depending on food availability.  相似文献   

14.
In species that produce broods of multiple offspring, parents need to partition resources among simultaneously growing neonates that often differ in growth requirements. In birds, multiple ovarian follicles develop inside the female at the same time, resulting in a trade-off of resources among them and potentially limiting maternal ability for sex-specific allocation. We compared resource acquisition among oocytes in relation to their future sex and ovulation order in two populations of house finches with contrasting sex-biased maternal strategies. In a native Arizona population, where mothers do not bias offspring sex in relation to ovulation order, the male and female oocytes did not show sex-specific trade-offs of resources during growth and there was no evidence for spatial or temporal segregation of male and female oocytes in the ovary. In contrast, in a recently established Montana population where mothers strongly bias offspring sex in relation to ovulation order, we found evidence for both intra-sexual trade-offs among male and female oocytes and sex-specific clustering of oocytes in the ovary. We discuss the importance of sex-specific resource competition among offspring for the evolution of sex-ratio adjustment and sex-specific maternal resource allocation.  相似文献   

15.
Glucocorticoids circulating in breeding birds during egg production accumulate within eggs, and may provide a potent form of maternal effect on offspring phenotype. However, whether these steroids affect offspring development remains unclear. Here, we employed a non-invasive technique that experimentally elevated the maternal transfer of corticosterone to eggs in a wild population of house wrens. Feeding corticosterone-injected mealworms to free-living females prior to and during egg production increased the number of eggs that females produced and increased corticosterone concentrations in egg yolks. This treatment also resulted in an increase in the amount of yolk allocated to eggs. Offspring hatching from these eggs begged for food at a higher rate than control offspring and eventually attained increased prefledging body condition, a trait predictive of their probability of recruitment as breeding adults in the study population. Our results indicate that an increase in maternal glucocorticoids within the physiological range can enhance maternal investment and offspring development.  相似文献   

16.

Background

Maternal effects mediated by egg size and quality may profoundly affect offspring development and performance, and mothers may adjust egg traits according to environmental or social influences. In avian species, context-dependency of maternal effects may result in variation in egg composition, as well as in differential patterns of covariation among selected egg components, according to, for example, position in the laying sequence or offspring sex. We investigated variation in major classes of egg yolk components (carotenoids, vitamins and steroid hormones) in relation to egg size, position in the laying sequence and embryo sex in clutches of the Yellow-legged Gull (Larus michahellis). We also investigated their covariation, to highlight mutual adjustments, maternal constraints or trade-offs in egg allocation.

Results

Laying sequence-specific patterns of allocation emerged: concentration of carotenoids and vitamin E decreased, while concentrations of androgens increased. Vitamin A, estradiol and corticosterone did not show any change. There was no evidence of sex-specific allocation or covariation of yolk components. Concentrations of carotenoids and vitamins were positively correlated. Egg mass decreased along the laying sequence, and this decrease was negatively correlated with the mean concentrations of carotenoids in clutches, suggesting that nutritionally constrained females lay low quality clutches in terms of carotenoid content. Finally, clutches with smaller decline in antioxidants between first- and last-laid eggs had a larger increase in yolk corticosterone, suggesting that a smaller antioxidant depletion along the laying sequence may entail a cost for laying females in terms of increased stress levels.

Conclusions

Since some of the analyzed yolk components (e.g. testosterone and lutein) are known to exert sex-specific phenotypic effects on the progeny in this species, the lack of sex-specific egg allocation by mothers may either result from trade-offs between contrasting effects of different egg components on male and female offspring, or indicate that sex-specific traits are controlled primarily by mechanisms of sexual differentiation, including endogenous hormone production or metabolism of exogenous antioxidants, during embryonic development.  相似文献   

17.
边疆晖  吴雁  刘季科 《兽类学报》2004,24(2):139-144
本研究了根田鼠母体捕食应激对其子代出生、断乳和成体体重、窝性比及死亡率的作用,检验Trivers—Willard模型的2个前提条件、母体应激激素在母体投资中的作用,以及母体捕食应激效应与该模型的关系。将妊娠根田鼠母体暴露于其捕食艾鼬,母体应激子代的出生和断乳体重均显降低;到成体,雄性体重有此效应,而雌性体重则接近对照。出生窝性比无变化,但成体窝性比向雌性偏斜。不同年龄阶段的死亡率无显变化,但累计死亡率明显增大。处理雄性子代在断乳和成体时的皮质酮含量显增高,而雌性子代则无显变化,从而验证了Trivers-Willard模型的2个前提条件,提出应激母体激素参与母体对子代的投资观点,并认为,母体捕食应激使根田鼠子代成体窝性比向雌性偏斜的生理投资符合进化稳定对策。  相似文献   

18.
Environmental cues and social interactions are known to influence reproductive physiology and behavior in vertebrates. In female birds, male courtship displays can result in the growth of ovarian follicles, the production of reproductive hormones, and stimulation of oviduct development, all of which have the potential to influence maternal investment. Male Japanese quail follow a typical sequence of copulatory behaviors during a mating interaction and often force copulations with unreceptive females. We hypothesized that female Japanese quail could adjust maternal investment in response to male copulatory behaviors during a single mating interaction. We investigated the relationships between 1) male copulatory behaviors and post-mating concentrations of steroids in the female, 2) female steroid concentrations and fertilization success of inseminations and 3) female steroid concentrations and the offspring sex ratio. We found that male condition and copulatory behaviors predicted female steroid concentrations and maternal investment in eggs laid after a mating trial. The body condition of one or both mates was a significant predictor of the changes in female corticosterone and testosterone concentrations after mating, whereas specific male copulatory behaviors significantly predicted changes in female progesterone concentrations. Male and female body condition, male neck grabs and post-mating concentrations of female corticosterone, progesterone, and testosterone were all significant predictors of egg fertilization rates. Female body condition, male copulation efficiency, and female testosterone concentrations were significant predictors of offspring sex ratios. Our results show that phenotypic and behavioral characteristics of male Japanese quail modulate female steroid concentrations and result in changes in maternal investment.  相似文献   

19.
Cooperatively breeding birds have been used frequently to study sex allocation because the adaptive value of the sexes partly depends upon the costs and benefits for parents of receiving help. I examined patterns of directional sex allocation in relation to maternal condition (Trivers-Willard hypothesis), territory quality (helper competition hypothesis), and the number of available helpers (helper repayment hypothesis) in the superb starling, Lamprotornis superbus, a plural cooperative breeder with helpers of both sexes. Superb starlings biased their offspring sex ratio in relation to prebreeding rainfall, which was correlated with maternal condition. Mothers produced relatively more female offspring in wetter years, when they were in better condition, and more male offspring in drier years, when they were in poorer condition. There was no relationship between offspring sex ratio and territory quality or the number of available helpers. Although helping was male biased, females had a greater variance in reproductive success than males. These results are consistent with the Trivers-Willard hypothesis and suggest that although females in most cooperatively breeding species make sex allocation decisions to increase their future direct reproductive success, female superb starlings appear to base this decision on their current body condition to increase their own inclusive fitness.  相似文献   

20.
Maternal effects can have an adaptive value if they improve the performance of offspring. As such, the transfer of maternal testosterone (T) to the eggs has been suggested as a mechanism for adaptive maternal control of offspring phenotype in birds, although recent studies have shown negative effects of testosterone on hatching rate and chick survival. Here, we experimentally investigated whether socially stressful conditions experienced by female house sparrows during egg laying affected their circulating levels of androgens and the amount transferred to the eggs. Social stress was simulated by the intrusion of a foreign male placed near the nest box during the egg‐laying sequence. We found that (1) both female and yolk testosterone titres were positively related to breeding density; (2) yolk testosterone was negatively correlated with maternal testosterone; (3) yolk testosterone was positively correlated with the behavioural response of females towards the intruder and (4) the interaction between social intrusion and breeding density affected the amount of testosterone transferred to the eggs. Altogether, our results suggest that females may be able to modulate the amount of testosterone they allocate to their eggs according to the social environment they experience during egg laying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号