首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.  相似文献   

2.
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNASeq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression.  相似文献   

3.
Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development.  相似文献   

4.
Clone loaches reproduce unisexually in a wild population of Hokkaido Island, Japan. These clone loaches produce genetically identical unreduced eggs which develop to diploid individuals without any genetic contribution of sperm donors. In the present study, sex reversal of clone loaches was attempted and the reproductive potential of resultant clone males was examined. Clone loaches administered 0.5 ppm of 17-alpha methyltestosterone (MT) for 30 days from 1 month after hatching differentiated into physiological males. These sex-reversed clone males produced fertile spermatozoa with a diploid DNA content. Diploid spermatozoa had significantly larger heads than normal haploid sperm, but had a normal shape showing a head, mid-piece, and tail. The motility of diploid spermatozoa was low after ambient water was added. Concentration of diploid spermatozoa per unit of sperm was lower than that of control haploid spermatozoa. Microsatellite genotyping revealed that triploid progeny from the cross between a normal diploid female and a sex-reversed clone male had two alleles specific to the diploid clone male and one allele of the mother loach. These results indicated that the sex-reversed clone males produced fertile diploid spermatozoa genetically identical to the clone lineage.  相似文献   

5.
We investigated the influence of drone size and potential reproductive quality on caste interactions by adding large drones reared in drone cells (DC drones; considered to be of higher quality) and small drones reared in worker cells (WC drones; of lower quality) to two observation colonies and monitoring worker–drone interactions and acceptance by workers. When initially introduced into the colonies more DC drones received trophallaxis, whereas more WC drones received aggression and eviction attempts from workers. Nevertheless, WC and DC drones were equally likely to be accepted by workers. For both drone types accepted individuals had slightly, but significantly greater weights than rejected males. Thus, workers discriminated between drones of different sizes and potential quality upon initial encounter, although these discriminations were not strongly associated with acceptance decisions. After drones were accepted, workers either showed no preference for interacting with WC or DC drones, or if a preference was shown it tended to favor WC drones. Compared to accepted DC drones, significantly more WC drones received grooming for longer periods of time and also spent more time engaged in all interactions with workers combined. DC and WC drones did not differ in the likelihood of receiving trophallaxis or the vibration signal, although for both interactions slightly more WC drones were recipients. Thus, workers may bias some interactions with accepted drones to favor smaller individuals with potential developmental deficiencies, in a manner that could contribute to the production of a greater total number of competitive males and increased colony reproductive output.  相似文献   

6.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

7.
Social insect colonies invest in reproduction and growth, buthow colonies achieve an adaptive allocation to these life-historycharacters remains an open question in social insect biology.Attempts to understand how a colony's investment in reproductionis shaped by the queen and the workers have proved complicatedbecause of the potential for queen–worker conflict overthe colony's investment in males versus females. Honeybees,in which this conflict is expected to be minimal or absent,provide an opportunity to more clearly study how the actionsand interactions of individuals influence the colony's productionand regulation of males (drones). We examined whether honeybeequeens can influence drone regulation by either allowing orpreventing them from laying drone eggs for a period of timeand then examining their subsequent tendency to lay drone andworker eggs. Queens who initially laid drone eggs subsequentlylaid fewer drone eggs than the queens who were initially preventedfrom producing drone eggs. This indicates that a colony's regulationof drones may be achieved not only by the workers, who buildwax cells for drones and feed the larvae, but also by the queen,who can modify her production of drone eggs. In order to betterunderstand how the queen and workers contribute to social insectcolony decisions, future work should attempt to distinguishbetween actions that reflect conflict over sex allocation andthose that reflect cooperation and shared control over the colony'sinvestment in reproduction.  相似文献   

8.
Female mites of the genus Varroa reproduce on the immature stages of Apis cerana F. and A. mellifera L. Mites are found more often in drone brood than worker brood, and while evolutionary explanations for this bias are well supported, the proximate mechanisms are not known. In one experiment, we verified that the proportion of hosts with one or more mites (MPV, mite prevalence value) was significantly greater for drones (0.763 +/- 0.043) (lsmean +/- SE) than for workers (0.253 +/- 0.043) in populations of mites and bees in the United States. Similar results were found for the average number of mites per host. In a second experiment, using a cross-fostering technique in which worker and drone larvae were reared in both worker and drone cells, we found that cell type, larval sex, colony and all interactions affected the level of mites on a host. Mite prevalence values were greatest in drone larvae reared in drone cells (0.907 +/- 0.025), followed by drone larvae reared in worker cells (0.751 +/- 0.025), worker larvae reared in worker cells (0.499 +/- 0.025), and worker larvae reared in drone cells (0.383 +/- 0.025). Similar results were found for the average number of mites per host. Our data show that mite levels are affected by environmental factors (cell type), by factors intrinsic to the host (sex), and by interactions between these factors. In addition, colony-to-colony variation is important to the expression of intrinsic and environmental factors.  相似文献   

9.
We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real‐time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers.  相似文献   

10.
Colony reproduction in honey bees involves complex interactions between sterile workers and reproductive castes. Although worker–queen interactions have been studied in detail, worker–drone interactions are less well understood. We investigated caste interactions in honey bees by determining the age and behavior of workers that perform vibration signals, trophallaxis, and grooming with drones. Workers of all ages could engage in the different interactions monitored, although workers that performed vibration signals on drones were significantly older than those engaging in trophallaxis and grooming. Only 3–8% of workers engaged in the different behaviors were monitored. Compared with workers that performed vibration signals only on workers (‘worker vibrators’), those that performed signals on both workers and drones (‘drone vibrators’) had greater movement rates inside the nest, higher vibration signaling rates, and were more likely to have an immediate association with foraging. Both worker vibrators and drone vibrators contacted drones of all ages as they moved through the nest. However, drone vibrators contacted drones at higher rates, contacted slightly, but significantly younger drones, and were more likely to engage in trophallaxis and grooming with drones, in addition to vibrating them. Taken together, our results suggest that tiny proportions of workers belonging to separate, but overlapping age groups provide most of the care received by adult drones, and that drone vibrators comprise a subset of signalers within a colony that have an increased tendency to contact and interact with drones. Vibratory, tactile signals are involved in colony reproductive and movement decisions in a number of species of bees, wasps and ants, and may provide valuable tools for investigating caste interactions in many insect societies.  相似文献   

11.
Abstract In haplodiploid Hymenoptera, unfertilized eggs produce haploid males while fertilized eggs lead to diploid females under most circumstances. Diploid males can also be produced from fertilization under a system of sex determination known as complementary sex determination (CSD). Under single-locus CSD, sex is determined by multiple alleles at a single sex locus. Individuals heterozygous at the sex locus are female while hemizygous and homozygous individuals develop as haploid and diploid males, respectively. In multiple-locus CSD, two or more loci, each with two or more alleles, determine sex. Diploid individuals are female if one or more sex loci are heterozygous, while a diploid is male only if homozygous at all sex loci. Diploid males are known to occur in 43 hymenopteran species and single-locus CSD has been demonstrated in 22 of these species. Diploid males are either developmentally inviable or sterile, so their production constitutes a genetic load. Because diploid male production is more likely under inbreeding, CSD is a form of inbreeding depression. It is crucial to preserve the diversity of sex alleles and reduce the loss of genetic variation in biological control. In the parasitoid species with single-locus CSD, certain precautionary procedures can prevent negative effects of single-locus CSD on biological control.  相似文献   

12.
13.
在膜翅目中 ,未受精卵形成单倍体的雄蜂 ,而在大多数情况下受精卵将产生双倍体的雌蜂。但是 ,因互补性别决定机制 (CSD)的作用 ,受精卵有时也会产生双倍体雄蜂。这种性别决定机制包括单位点的CSD和多位点的CSD。在单位点的CSD作用下 ,唯一的一个性位点上的多个等位基因决定后代个体的性别。性位点上杂合的个体将是雌性 ,半合或同型结合的个体将分别形成单倍体或双倍体的雄性。在多位点的CSD作用下 ,两个或两个以上的性位点控制后代的性别 ,每个性位点上包含两个或两个以上的等位基因。如果一个或一个以上的性位点是杂合的 ,形成的双倍体后代都是雌性的 ,但若是所有的性位点都为同型合子 ,则将产生双倍体的雄蜂。在膜翅目中 ,目前已知 4 3种具有双倍体雄蜂 ,其中 2 2种发现存在单位点的CSD ,但是多位点的CSD还有待于确认。双倍体的雄性个体或者不能存活 ,或者不育 ,这样的个体形成将对寄生蜂种群的增长带来一定的遗传负担。在生物防治上 ,保护寄生蜂种群的性等位基因的多样性及减少其遗传多异性的损失极其重要。如果利用具有单位点CSD的种类 ,采取一定的措施将可避免由于双倍体雄性的形成所带来的负面影响。  相似文献   

14.
Duchateau  M. J.  Mariën  J. 《Insectes Sociaux》1995,42(3):255-266
Summary InB. terrestris diploid males develop normally into adults (Duchateau et al., 1994). The diploid males are similar in appearance to the haploid males, except that they are smaller. The size of the testis of diploid males, relative to the length of the radial cell, is smaller than that of haploid males. There is overlap in the frequency distribution with respect to body size and testis size. The spermatozoa of diploid males are larger than those of the haploids and the vasa deferentia contain fair less spermatozoa than those of haploid males of the same age. Countings and measurements of the spermatozoa, therefore, can give the best indication about the ploidy of the males. Diploid males are successful in mating. They mate at a younger age than haploid males and they die sooner. The number of vial offspring of diploid males, however, is very low. No queen that mated with a diploid male produced a colony, but a few queens did produce some progeny. These might have been triploid males and workers. InB. terrestris higher ploidy results in smaller individuals, whereas in several other species of the Hymenoptera it has been found to result in larger individuals.  相似文献   

15.
A colony-level phenotype was used to map the major sex determination locus (designatedX) in the honey bee (Apis mellifera). Individual queen bees (reproductive females) were mated to single drones (fertile males) by instrumental insemination. Haploid drone progeny of an F1 queen were each backcrossed to daughter queens from one of the parental lines. Ninety-eight of the resulting colonies containing backcross progeny were evaluated for the trait ‘low brood-viability’ resulting from the production of diploid drones that were homozygous atX. DNA samples from the haploid drone fathers of these colonies were used individually in polymerase chain reactions (PCR) with 10-base primers. These reactions generated random amplified polymorphic DNA (RAPD) markers that were analyzed for cosegregation with the colony-level phenotype. One RAPD marker allele was shared by 22 of 25 drones that fathered low brood-viability colonies. The RAPD marker fragment was cloned and partially sequenced. Two primers were designed that define a sequence-tagged site (STS) for this locus. The primers amplified DNA marker fragments that cosegregated with the original RAPD marker. In order to more precisely estimate the linkage betweenX and the STS locus, another group of bees consisting of progeny from one of the low-brood viability colonies was used in segregation analysis. Four diploid drones and 181 of their diploid sisters (workers, nonfertile females) were tested for segregation of the RAPD and STS markers. The cosegregating RAPD and STS markers were codominant due to the occurrence of fragment-length alleles. The four diploid drones were homozygous for these markers but only three of the 181 workers were homozygotes (recombinants). Therefore the distance betweenX and the STS locus was estimated at 1.6 cM. An additional linked marker was found that was 6.6 cM from the STS locus.  相似文献   

16.
Diploid males in hymenopterans are generally either inviable or sterile, thus imposing a severe genetic load on populations. In species with the widespread single locus complementary sex determination (sl-CSD), sex depends on the genotype at one single locus with multiple alleles. Haploid (hemizygous) individuals are always males. Diploid individuals develop into females when heterozygous and into males when homozygous at the sex determining locus. Our comparison of the mating and reproductive success of haploid and diploid males revealed that diploid males of the braconid parasitoid Cotesia glomerata sire viable and fertile diploid daughters. Females mated to diploid males, however, produced fewer daughters than females mated to haploid males. Nevertheless, females did not discriminate against diploid males as mating partners. Diploid males initiated courtship display sooner than haploid males and were larger in body size. Although in most species so far examined diploid males were recognized as genetic dead ends, we present a second example of a species with sl-CSD and commonly occurring functionally reproductive diploid males. Our study suggests that functionally reproductive diploid males might not be as rare as hitherto assumed. We argue that the frequent occurrence of inbreeding in combination with imperfect behavioural adaptations towards its avoidance promote the evolution of diploid male fertility.  相似文献   

17.
Abstract. Varroa destructor is a parasitic mite of the honey bee species Apis cerana Fabr . and A. mellifera L. Mature females reproduce on the immature stages of their hosts, producing more viable female offspring on drone hosts than on worker hosts. Thus, immature drones are more likely to be infested with mites than immature workers. To investigate the hypothesis that differences in host chemistries underlie the biased distribution of mites between worker and drone brood, the arrestment responses of mites to solvent extracts of a number of stimuli normally encountered by a mite during its life cycle were measured. Mites were arrested by cuticular extracts of worker and drone larvae obtained at 0, 24 and 48 h prior to the time when cell capping is completed. Mites were also arrested by extracts of worker and drone, brood food and cocoons, and by a blend of synthetic fatty acid esters previously shown to be active in the host acquisition process. In a wind tunnel bioassay, mites were attracted to odours from living fifth-instar worker and drone larvae, but not to volatiles from cocoons, brood food or a blend of fatty acid esters. The sex of the host was not an important factor affecting the behavioural responses of the mites in any assay. We conclude that host kairomones play a role in the host acquisition process, but we found no evidence to support the hypothesis that mites use these substances to differentiate between worker and drone brood.  相似文献   

18.
1. In haplodiploid social insects where males are haploid and females are diploid, inbreeding depression is expressed as the production of diploid males when homozygosity at the sex‐determining locus results in the production of diploid individuals with a male phenotype. Diploid males are often assumed to have reduced fitness compared with their haploid brothers. 2. While studying the reproductive biology of a leaf‐cutting ant, Atta sexdens, in Gamboa, Republic of Panama, we detected the presence of a larger male morph. Using microsatellite markers we were able to confirm that the large male morph was diploid in 87% of cases. 3. We infer that the Gamboa population of A. sexdens experiences inbreeding depression because diploid males were found in three out of five mature colonies. However, their frequencies were relatively low because queens were multiply mated and our estimates suggest that many diploid male larvae may not survive to adulthood. 4. We measured two traits potentially linked to male reproductive success: sperm length and sperm number, and showed that diploid males produced fewer but longer sperm. These results provide indirect evidence that diploid male reproductive success would be reduced compared with haploid males if they were able to copulate. 5. We conclude that diploid male production is likely to affect the fitness of A. sexdens queens with a matched mating, as these males are produced at the cost of workers and, if the colony survives to reach mature size, also gynes.  相似文献   

19.
In social insect colonies, male production may involve conflicts over the sex ratio, worker vs. queen reproduction, and each queen's contribution to the males when there are multiple queens. We examined male production in the swarm‐founding, multiple‐queened wasp, Polybioides tabidus, for which previous work suggested worker control of the sex ratios. We found that queens produced the males in accord with the collective worker preference. We also found that diploid males were produced, but only in association with haploid males. Simulations show they should have been produced in other colonies as well and their absence indicates that they were killed in some of these other colonies. The pattern of their removal indicates that P. tabidus cannot distinguish diploid from haploid males, and that haploid males would have been removed from these colonies too. This provides evidence that the workers are able to manipulate male production when collective preferences dictate.  相似文献   

20.
In the HymenopteraDiadromus pulchellus diploid males have been observed in samples collected in the wild and bred in the laboratory. Using a yellow body color mutant strain, a protocol of crosses, involving inbred individuals, allows the routine production of such diploid males. These males result from the development of fertilized ova and emerge normally. Their preimaginal viability is similar to those of other individuals, and their imaginal viability does not differ from that of haploid males. Diploid males present normal external morphology and neither mosaicism nor intersexuality was observed. However, they are bigger than haploid males and have head size and wing length similar to those of females. The significance of diploid male viability in hymenopteran populations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号