首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal characteristics of ACTH and beta-endorphin secretion induced by bovine hypothalamic CRF-A (void volume) and CRF-B (Kav = 0.583) separated by Sephadex G-100 were compared to those of synthetic ovine or rat CRF, sauvagine and vasopressin. Dispersed cells or minced fragments of rat adenohypophyses perifused in a column were exposed to various secretagogues, and ACTH and/or beta-endorphin concentrations of the effluent were measured by radioimmunoassays. CRF-A or CRF-B induced an immediate brisk rise of ACTH and beta-endorphin within 1 min after initiation of CRF perifusion. The maximum rate of ACTH or beta-endorphin secretion was reached 1-2 min later. Hormone secretion persisted throughout a 10-min exposure to these secretagogues. More than 80% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with bovine CRF occurred during exposure to CRF. With 10-min perifusion with 300 ng/ml ovine or rat CRF, the onset of the major CRF-stimulated ACTH or beta-endorphin secretion was markedly delayed compared to that following bovine CRF. During perifusion with ovine or rat CRF, a modest slow increase in ACTH or beta-endorphin secretion was observed. More than 60-70% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with rat or ovine CRF occurred after CRF withdrawal. The ACTH secretory patterns for sauvagine were very similar to those for synthetic rat or ovine CRF. These results suggest some qualitative differences between partially purified bovine CRF and synthetic ovine or rat CRF.  相似文献   

2.
We administered ovine corticotropin-releasing factor (CRF) as a bolus intravenous injection (1 microgram/kg) at 09.00 and at 20.00 to assess the influence of circadian changes in the hypothalamic-pituitary-adrenal axis on the response to CRF. The increase in plasma ACTH levels after CRF was only slightly lower in the morning than in the evening. The plasma cortisol response to ACTH, however, was significantly greater in the evening than in the morning (p less than 0.005). At both times of day CRF administration had no effect on plasma concentrations of GH, PRL, LH, AVP, insulin, PRA or glucose. No effects were observed on the hematopoietic system, kidneys or liver. In addition, CRF had no effect on heart rate, blood pressure or respiratory rate at the dose employed. Approximately 10% of the subjects complained of a transient upper body and facial hot flush. These observations indicate that the magnitude of the plasma cortisol rise after CRF depends on the time of administration.  相似文献   

3.
The biological activity of ovine (o) and human (h) corticotropin-releasing factor (CRF) in normal volunteers was investigated, using bolus injections with different CRF dosages. There was a significant increase of ACTH, beta-endorphin and cortisol after the injection of all dosages. Repetitive stimulation and continuous infusion of hCRF lead to repetitive release of identical amounts of ACTH or constant elevation of ACTH levels. oCRF and hCRF serum immunoreactivity was measured with specific radioimmunoassays after bolus injection, pulsatile administration and infusion of CRF. The half-time of serum disappearance after acute injection studies was calculated as 9 min for hCRF dand 18 min for oCRF. The 'metabolic clearance' of hCRF calculated using the infusion study was 2.72 ml/min X kg. Endogenous CRF immunoreactivity was detectable in 14 patients during insulin hypoglycemia and in 86 out of 97 pregnant females. Furthermore, CRF could be extracted from human placenta. The chromatographic pattern of extracted placenta CRF, pregnancy serum CRF and CRF standard preparation was identical. Furthermore, CRF immunoreactivity was detectable in some patients with different causes of ACTH hypersecretion.  相似文献   

4.
Corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) stimulate the secretion of beta-endorphin by human PBMC. It is shown here that peripheral blood B cells are responsible for the production of beta-endorphin after culture with CRF and AVP. The presence of CD14+ monocytes is, however, a prerequisite for the enhancing activity of CRF and AVP. The data presented here show that rIL-1 beta can replace CRF and AVP, whereas a mAb directed against IL-1 abrogates the response to CRF and AVP. These results indicate that IL-1 mediates the effect of CRF and AVP on beta-endorphin production by human PBMC.  相似文献   

5.
Excessive sugar consumption could lead to high blood glucose levels that are harmful to mammalian health and life. Despite consuming large amounts of sugar‐rich food, fruit bats have a longer lifespan, raising the question of how these bats overcome potential hyperglycemia. We investigated the change of blood glucose level in nectar‐feeding bats (Eonycteris spelaea) and fruit‐eating bats (Cynopterus sphinx) via adjusting their sugar intake and time of flight. We found that the maximum blood glucose level of C. sphinx was higher than 24 mmol/L that is considered to be pathological in other mammals. After C. sphinx bats spent approximately 75% of their time to fly, their blood glucose levels dropped markedly, and the blood glucose of E. spelaea fell to the fast levels after they spent 70% time of fly. Thus, the level of blood glucose elevated with the quantity of sugar intake but declined with the time of flight. Our results indicate that high‐intensive flight is a key regulator for blood glucose homeostasis during foraging. High‐intensive flight may confer benefits to the fruit bats in foraging success and behavioral interactions and increases the efficiency of pollen and seed disposal mediated by bats.  相似文献   

6.
X Z Khawaja  I C Green 《Peptides》1991,12(2):227-233
Intraperitoneal administration of beta-endorphin (1 mg/kg) to ob/ob mice doubled fasting plasma insulin concentrations within 30 min, while plasma glucose concentrations were unaltered. In lean mice, beta-endorphin failed to alter plasma insulin or glucose responses. In glucose-loaded ob/ob mice, beta-endorphin (1 mg/kg) reduced insulin levels at 40 min, and delayed glucose disposal. A lower dose of beta-endorphin (0.1 mg/kg) decreased plasma insulin at 90 min, with no effect on plasma glucose disposal. In lean mice, only the higher dose of beta-endorphin suppressed the glucose-stimulated rise in plasma insulin concentrations, without affecting plasma glucose. Beta-endorphin's actions were blocked by naltrexone and could not be mimicked by N-acetyl-beta-endorphin. Beta-endorphin (10(-8)M) enhanced insulin release from isolated ob/ob and lean mouse islets incubated in medium containing 6 mM glucose, but inhibited release when 20 mM glucose was present. These effects were naloxone reversible. The results indicate that 1) ob/ob mice display a greater magnitude of response in vivo to beta-endorphin's actions on insulin release compared with lean mice, 2) high concentrations of beta-endorphin exacerbate glucose disposal in ob/ob mice. 3) the prevailing glucose concentration is an important determinant of whether beta-endorphin's effects on insulin release will be stimulatory or inhibitory and 4) these actions are mediated via opiate receptors.  相似文献   

7.
The hormonal and metabolic responses of beta-endorphin infused cephalad into the carotid artery, or via the jugular vein, were examined in 10 normal dogs. The intracarotid administration of beta-endorphin resulted in significant increases in plasma glucagon, adrenocorticotropin, and cortisol levels. Hepatic glucose production increased only transiently and there was no significant change in glucose disappearance or plasma glucose concentrations. Infusion of beta-endorphin in the jugular vein gave rise to significant increases in glucagon and cortisol levels and to a transient increase in plasma epinephrine. Although no significant changes in glucose kinetics could be demonstrated, there was a slight transient decrease in plasma glucose concentrations. In conclusion, both intracarotid and intrajugular infusions of beta-endorphin stimulated glucagon secretion independent of circulating catecholamines, and increased cortisol release, probably through activation of the pituitary-adrenocortical axis.  相似文献   

8.
Several studies have revealed that physiological concentrations of biotin are required for the normal expression of critical carbohydrate metabolism genes and for glucose homeostasis. However, the different experimental models used in these studies make it difficult to integrate the effects of biotin deficiency on glucose metabolism. To further investigate the effects of biotin deficiency on glucose metabolism, we presently analyzed the effect of biotin deprivation on glucose homeostasis and on pancreatic islet morphology. Three-week-old male BALB/cAnN Hsd mice were fed a biotin-deficient or a biotin-control diet (0 or 7.2 μmol of free biotin/kg diet, respectively) over a period of 8 weeks. We found that biotin deprivation caused reduced concentrations of blood glucose and serum insulin concentrations, but increased plasma glucagon levels. Biotin-deficient mice also presented impaired glucose and insulin tolerance tests, indicating defects in insulin sensitivity. Altered insulin signaling was linked to a decrease in phosphorylated Akt/PKB but induced no change in insulin receptor abundance. Islet morphology studies revealed disruption of islet architecture due to biotin deficiency, and an increase in the number of α-cells in the islet core. Morphometric analyses found increased islet size, number of islets and glucagon-positive area, but a decreased insulin-positive area, in the biotin-deficient group. Glucagon secretion and gene expression increased in islets isolated from biotin-deficient mice. Our results suggest that biotin deficiency promotes hyperglycemic mechanisms such as increased glucagon concentration and decreased insulin secretion and sensitivity to compensate for reduced blood glucose concentrations. Variations in glucose homeostasis may participate in the changes observed in pancreatic islets.  相似文献   

9.
The role of the thyroid gland in glucose homeostasis remains incompletely understood. To get a better insight hypo-and hyperthyroid conditions were experimentally induced in rat and found severe defects in glucose homeostasis. While blood glucose level returned to normal level after 2.5 hr of oral glucose challenge in control rats the blood glucose level remained high even after 24 hr of glucose load in both hypo- and hyperthyroid rats. These experimentally manipulated rats displayed higher levels of liver glycogen (10.45-22.8-fold) and serum glutamic pyruvic transaminase (1.48-9.8-fold). Liver histology of hyperthyroid treated rats revealed hepatotoxicity. From the results it can be concluded that thyroid gland plays an important role in glucose homeostasis.  相似文献   

10.
Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone   总被引:4,自引:0,他引:4  
R L Moldow  A J Fischman 《Peptides》1987,8(5):819-822
The effect of intraperitoneal administration of cocaine on the concentrations of hypothalamic corticotropin releasing factor like-immunoreactivity (CRF-LI), plasma ACTH, beta-endorphin, and corticosterone was investigated. Groups of rats were injected with 20 mg/kg cocaine HCI or 0.9% NaCl and then killed 0, 10, 20, 30 or 60 minutes later. Hypothalamic CRF-LI, plasma ACTH, beta-endorphin, and corticosterone concentrations were determined by radioimmunoassay. A significant increase in plasma ACTH, beta-endorphin, and corticosterone concentrations was observed after cocaine administration. In contrast, cocaine had no significant effect on hypothalamic CRF-LI concentrations. Intravenous administration of 0.5 and 2.0 mg/kg cocaine to rats in which the endogenous release of CRF was blocked by chlorpromazine, morphine, and pentobarbital elicited a significant increase in plasma corticosterone concentrations. These results demonstrate that cocaine induces the release of ACTH, beta-endorphin, and corticosterone and suggest that this response is mediated at the pituitary level.  相似文献   

11.
The opioid polypeptide beta-endorphin is present in fetal blood but it is not clear whether its source is the fetus or the placenta. We therefore measured beta-endorphin in extracts of fetal femoral arterial and umbilical venous blood plasma in sheep by radioimmunoassay to determine whether the fetus or the placenta is the major source of beta-endorphin in the fetal circulation. Chromatographic analysis of extracts of fetal arterial plasma showed that beta-lipotropin and other precursors of beta-endorphin made only a minor contribution to the immunoreactivity detected. Concentrations of immunoreactive beta-endorphin were higher in the femoral artery than in the umbilical vein in fetal sheep between 113 and 128 days of pregnancy. Therefore the placenta removes beta-endorphin or a closely related polypeptide of fetal origin from the umbilical circulation in sheep at this stage of gestation. Acute hypoxaemia and hypoglycaemia increase the concentrations of immunoassayable beta-endorphin in blood plasma of adult and fetal sheep, but little is known about the effects of chronic hypoxaemia or hypoglycaemia on the circulating levels of beta-endorphin and related polypeptides in the fetus. Therefore we also measured immunoreactive beta-endorphin in blood plasma from fetal sheep in which growth retardation in association with restricted placental growth was produced by removal of endometrial caruncles before mating. Intra-uterine growth retardation was accompanied by chronic hypoglycaemia and chronic hypoxaemia in the fetuses. This was not associated with higher concentrations of beta-endorphin-like immunoreactivity in fetal arterial or umbilical venous plasma, but was accompanied by significantly increased placental extraction of fetal immunoreactive beta-endorphin from the umbilical circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
It was aim of the study to investigate the in vivo potential of a novel insulin-thiomer complex nanoparticulate delivery system. Insulin loaded nanoparticles were obtained by the formation of hydrogen bonds between poly(vinyl pyrrolidone) (PVP) and poly(acrylic acid)-cysteine (PAA-Cys) or poly(acrylic acid) (PAA), respectively, in the presence of insulin. Dissolution behavior of insulin from tablets as well as nanoparticulate suspensions was evaluated in vitro. Serum insulin concentrations and reduction of blood sugar values were determined after oral administration of nanoparticles formulated as enteric coated tablets and suspensions. Results displayed a low serum insulin concentration and pharmacological efficacy in terms of blood sugar reduction after oral administration of enteric coated tablets. On the contrary, nanoparticulate suspensions led to significant serum insulin concentrations. Furthermore a 2.3-fold improvement of the AUC of insulin could be achieved due to the use of thiolated PAA instead of unmodified PAA. In addition, a blood sugar reduction of 22% was observed. Results demonstrate that this novel complex nanoparticulate formulation is an encouraging new attempt toward the noninvasive delivery of peptide drugs.  相似文献   

13.
The effects of low blood glucose concentration during low-intensity prolonged physical exercise on the hypothalamus-pituitary-adrenocortical axis were investigated in healthy young men. In experiment 1, six subjects who had fasted for 14 h performed bicycle exercise at 50% of their maximal O2 uptake until exhaustion. At the end of the exercise, adrenocorticotropic hormone (ACTH) and cortisol increased significantly. However, this hormonal response was totally abolished when the same subjects exercised at the same intensity while blood glucose concentrations were maintained at the preexercise level. In experiment 2, in addition to ACTH and cortisol, the possible changes in plasma concentration of corticotropin-releasing factor (CRF) were investigated during exercise of the same intensity performed by six subjects. As suggested by a previous study (Tabata et al. Clin. Physiol. Oxf. 4: 299-307, 1984), when the blood glucose concentrations decreased to less than 3.3 mM, plasma concentrations of CRF, ACTH, and cortisol showed a significant increase. At exhaustion, further increases were observed in plasma CRF, ACTH, and cortisol concentrations. These results demonstrate that decreases in blood glucose concentration trigger the pituitary-adrenocortical axis to enhance secretion of ACTH and cortisol during low-intensity prolonged exercise in humans. The data also might suggest that this activation is due to increased concentration of CRF, which was shown to increase when blood glucose concentration decreased to a critical level of 3.3 mM.  相似文献   

14.
At any instant, the human erythrocyte sugar transporter presents at least one sugar export site but multiple sugar import sites. The present study asks whether the transporter also presents more than one sugar exit site. We approached this question by analysis of binding of [3H]cytochalasin B (an export conformer ligand) to the human erythrocyte sugar transporter and by analysis of cytochalasin B modulation of human red blood cell sugar uptake. Phloretin-inhibitable cytochalasin B binding to human red blood cells, to human red blood cell integral membrane proteins, and to purified human red blood cell glucose transport protein (GluT1) displays positive cooperativity at very low cytochalasin B levels. Cooperativity between sites and K(d(app)) for cytochalasin B binding are reduced in the presence of intracellular ATP. Red cell sugar uptake at subsaturating sugar levels is inhibited by high concentrations of cytochalasin B but is stimulated by lower (<20 nM) concentrations. Increasing concentrations of the e1 ligand forskolin also first stimulate then inhibit sugar uptake. Cytochalasin D (a cytochalasin B analogue that does not interact with GluT1) is without effect on sugar transport over the same concentration range. Cytochalasin B and ATP binding are synergistic. ATP (but not AMP) enhances [3H]cytochalasin B photoincorporation into GluT1 while cytochalasin B (but not cytochalasin D) enhances [gamma-32P]azidoATP photoincorporation into GluT1. We propose that the red blood cell glucose transporter is a cooperative tetramer of GluT1 proteins in which each protein presents a translocation pathway that alternates between uptake (e2) and export (e1) states but where, at any instant, two subunits must present uptake (e2) and two subunits must present exit (e1) states.  相似文献   

15.
In an attempt to know the role of the pineal gland on glucose homeostasis, the blood plasma concentrations of glucose, insulin and glucagon under basal conditions or after the administration of nutrients were studied in the jugular vein of conscious pinealectomized (Pn), melatonin-treated pinealectomized (Pn + Mel) and control (C) rats. Glucose levels were smaller in C than in Pn rats, while immunoreactive insulin (IRI) concentrations were significantly greater in C than in Pn rats. Contrary to this, immunoreactive glucagon (IRG) levels were significantly greater in Pn than in C animals. Melatonin treatment of Pn rats induces an increase of IRI concentrations and a reduction in IRG levels. Similar changes were obtained when hormonal determinations were carried out in portal blood plasma. Although ether anesthesia increases circulating glucagon levels in the porta and cava veins, the qualitative changes of plasma insulin and glucagon in Pn and Pn + Mel were similar to those found in conscious rats. To determine the effects of nutrients on pancreatic hormone release, intravenous arginine or oral glucose were administered to the animals of the three experimental groups. In C rats, both glucose and IRI levels reached a peak 30 minutes after glucose ingestion, decreasing thereafter. However, in Pn rats a glucose intolerance was observed, with maximum glucose and insulin concentrations at 60 minutes, while in Pn + Mel animals, glucose and IRI concentrations were in between the data obtained with the other two groups. Furthermore, glucose ingestion induced a significant reduction of IRG levels in all the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The responses of plasma beta-endorphin, insulin and glucose to two different isocaloric mixed meals--high carbohydrate (CHO meal) and high fat (fat meal)--were assessed in women with android obesity before (n = 11) as well as after (n = 5) weight reduction, and in normal-weight controls (n = 8). Basal plasma beta-endorphin concentrations in the obese subjects (7.7 +/- 1.2 pmol/l) were significantly (p less than 0.005) higher than in the controls (3.8 +/- 0.5 pmol/l) and were not influenced by weight loss. Fasting plasma levels and the integrated releases of insulin and glucose, both after the CHO meal and after the fat meal were significantly higher in the obese subjects than in the controls. The fat meal induced no changes in beta-endorphin levels in either group. After the CHO meal a significant decrease in plasma beta-endorphin concentration was observed only in the obese group before weight reduction. An influence on beta-endorphin release by macronutrients is hypothesized.  相似文献   

17.
The relationship between beta-endorphin(beta-EP)/beta-lipotropin(beta-LP) and insulin secretion in the basal state and after glucose challenge was studied in obese male Zucker rats and their lean littermates. Baseline plasma beta-EP/beta-LP concentrations were similar in the two groups of animals. Baseline plasma insulin and serum glucose concentrations were significantly higher in the obese animals. Following glucose challenge, the increase in plasma beta-EP/beta-LP concentrations was significantly lower in the obese animals than in their lean littermates. Opioid blockade with naloxone failed to alter the baseline hyperinsulinemia and hyperglycemia seen in the obese animals. The data suggest that the hyperinsulinemia in the obese Zucker rat is not due to endogenous hyperendorphinemia as shown in humans with polycystic ovary syndrome. The obese rats showed dissociation between glucose-stimulated plasma levels of beta-EP/beta-LP and insulin levels which may contribute to the hyperinsulinemia and insulin resistance in these animals.  相似文献   

18.
The effect of beta-endorphin on plasma glucose levels was investigated in streptozotocin-induced diabetic rats (STZ-diabetic rats). A dose-dependent lowering of plasma glucose was observed in the fasting STZ-diabetic rat fifteen minutes after intravenous injection of beta-endorphin. The plasma glucose-lowering effect of beta-endorphin was abolished by pretreatment with naloxone or naloxonazine at doses sufficient to block opioid mu-receptors. Also, unlike wild-type diabetic mice, beta-endorphin failed to induce its plasma glucose-lowering effect in the opioid mu-receptor knock-out diabetic mice. In isolated soleus muscle, beta-endorphin enhanced the uptake of radioactive glucose in a concentration-dependent manner. Stimulatory effects of beta-endorphin on glycogen synthesis were also seen in hepatocytes isolated from STZ-diabetic rats. The blockade of these actions by naloxone and naloxonazine indicated the mediation of opioid mu-receptors. In the presence of U73312, the specific inhibitor of phospholipase C (PLC), the uptake of radioactive glucose into isolated soleus muscle induced by beta-endorphin was reduced in a concentration-dependent manner, but it was not affected by U73343, the negative control of U73312. Moreover, chelerythrine and GF 109203X diminished the stimulatory action of beta-endorphin on the uptake of radioactive glucose at a concentration sufficient to inhibit protein kinase C (PKC). The data obtained suggest that activating opioid mu-receptors by beta-endorphin may increase glucose utilization in peripheral tissues via the PLC-PKC pathway to lower plasma glucose in diabetic rats lacking insulin.  相似文献   

19.
The objective of this study was to determine the change of plasma endothelin (ET)-1 concentrations and insulin resistance index after therapy for hyperthyroidism. We studied 20 patients with hyperthyroidism (15 women and 5 men; age, 34.0 +/- 2.8 years), and 31 patients with euthyroid goiters as controls (27 women, 4 men; age, 37.0 +/- 2.4 years). All hyperthyroid patients were treated with antithyroid drugs. The patients received evaluations before and after normalization of thyroid function. The evaluations included body mass index (BMI), body fat, and measurement of circulating concentrations of thyroid hormones, glucose, insulin, and ET-1. Hyperthyroid subjects had higher plasma ET-1 concentrations than the control group (P < 0.001). No significant differences in serum glucose and insulin concentrations or insulin resistance index estimated by the R value of the homeostasis model assessment (HOMA-R) were noted between the groups. Plasma ET-1 concentrations decreased after correction of hyperthyroidism compared with pretreatment (P = 0.006). Serum glucose concentrations decreased after correction of hyperthyroidism (P = 0.005). Moreover, both body weight-adjusted insulin concentrations and the HOMA-R index were also decreased after correction of hyperthyroidism compared with pretreatment (P = 0.026 and P = 0.019, respectively). Pearson's correlation revealed that plasma ET-1 levels positively correlated with serum triiodothyronine (T3) and free thyroxine (FT4) levels. Serum insulin levels and the HOMA-R index positively correlated with BMI and body fat. The HOMA-R index also positively correlated with serum T3 and FT4 levels. Neither insulin levels nor the HOMA-R index correlated with ET-1 levels. Hyperthyroidism is associated with higher plasma ET-1 concentrations. In addition, correction of hyperthyroidism is also associated with a decrease of plasma ET-1 levels as well as the insulin resistance index calculated by HOMA-R.  相似文献   

20.
In subjects with impaired insulin action, alterations of the serum sodium and potassium concentrations have been reported. The resulting cationic imbalance, along with the osmotic effect of the elevated sugar levels, could influence the course of diabetes mellitus management. Therefore, this study was conducted to compare the fasting blood glucose and HbA1c levels with those of the serum electrolytes. Blood samples were collected for assessment of HbA1c, fasting blood glucose (FBS), and electrolytes using different automated methods. A significant association between the serum sodium and FBS levels among types 1 and 2 insulin-treated patients, and type 2 oral agent patients was observed. A total of 138 diabetic subjects were randomly selected from any gender aged between 25 and 65?years at the University Diabetes Center, King Saud University, Riyadh KSA. The subjects were classified into types 1 or 2 DM using ADA criteria. Blood samples were collected for assessment of HbA1c, FBS, and electrolytes using different automated methods. It showed a significant association between serum sodium, FBS among type 1, type 2 insulin treated, and type 2 oral agent groups. However, the association of sodium and HbA1c was insignificant when analyzed individually. A statistically significant association (P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号