首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conduction properties of the cloned Shaker K+ channel.   总被引:13,自引:4,他引:9       下载免费PDF全文
The conduction properties of the cloned Shaker K+ channel were studied using electrophysiological techniques. Single channel conductance increases in a sublinear manner with symmetric increases in K+ activity, reaching saturation by 0.6 M K+. The Shaker K+ channel is highly selective among monovalent cations; under bi-ionic conditions, its selectivity sequence is K+ > Rb+ > NH+4 > Cs+ > Na+, whereas, by relative conductance in symmetric solutions, it is K+ > NH+4 > Rb+ > Cs+. In Cs+ solutions, single channel currents were too small to be measured directly, so nonstationary fluctuation analysis was used to determine the unitary Cs+ conductance. The single channel conductance displays an anomalous molefraction effect in symmetric mixtures of K+ and NH+4, suggesting that the conducting pore is occupied by multiple ions simultaneously.  相似文献   

2.
We studied monovalent permeability of Ca2+ release-activated Ca2+ channels (ICRAC) in Jurkat T lymphocytes following depletion of calcium stores. When external free Ca2+ ([Ca2+]o) was reduced to micromolar levels in the absence of Mg2+, the inward current transiently decreased and then increased approximately sixfold, accompanied by visibly enhanced current noise. The monovalent currents showed a characteristically slow deactivation (tau = 3.8 and 21.6 s). The extent of Na+ current deactivation correlated with the instantaneous Ca2+ current upon readdition of [Ca2+]o. No conductance increase was seen when [Ca2+]o was reduced before activation of ICRAC. With Na+ outside and Cs+ inside, the current rectified inwardly without apparent reversal below 40 mV. The sequence of conductance determined from the inward current at -80 mV was Na+ > Li+ = K+ > Rb+ >> Cs+. Unitary inward conductance of the Na+ current was 2.6 pS, estimated from the ratios delta sigma2/delta Imean at different voltages. External Ca2+ blocked the Na+ current reversibly with an IC50 value of 4 microM. Na+ currents were also blocked by 3 mM Mg2+ or 10 microM La3+. We conclude that ICRAC channels become permeable to monovalent cations at low levels of external divalent ions. In contrast to voltage-activated Ca2+ channels, the monovalent conductance is highly selective for Na+ over Cs+. Na+ currents through ICRAC channels provide a means to study channel characteristics in an amplified current model.  相似文献   

3.
The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel.  相似文献   

4.
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian skeletal muscle which represent functional consequences of differences in the primary structure of the subunits of the ACh receptor channel.  相似文献   

5.
In whole-cell patch clamp recordings from chick dorsal root ganglion neurons, removal of intracellular K+ resulted in the appearance of a large, voltage-dependent inward tail current (Icat). Icat was not Ca2+ dependent and was not blocked by Cd2+, but was blocked by Ba2+. The reversal potential for Icat shifted with the Nernst potential for [Na+]. The channel responsible for Icat had a cation permeability sequence of Na+ >> Li+ >> TMA+ > NMG+ (PX/PNa = 1:0.33:0.1:0) and was impermeable to Cl-. Addition of high intracellular concentrations of K+, Cs+, or Rb+ prevented the occurrence of Icat. Inhibition of Icat by intracellular K+ was voltage dependent, with an IC50 that ranged from 3.0-8.9 mM at membrane potentials between -50 and -110 mV. This voltage- dependent shift in IC50 (e-fold per 52 mV) is consistent with a single cation binding site approximately 50% of the distance into the membrane field. Icat displayed anomolous mole fraction behavior with respect to Na+ and K+; Icat was inhibited by 5 mM extracellular K+ in the presence of 160 mM Na+ and potentiated by equimolar substitution of 80 mM K+ for Na+. The percent inhibition produced by both extracellular and intracellular K+ at 5 mM was identical. Reversal potential measurements revealed that K+ was 65-105 times more permeant than Na+ through the Icat channel. Icat exhibited the same voltage and time dependence of inactivation, the same voltage dependence of activation, and the same macroscopic conductance as the delayed rectifier K+ current in these neurons. We conclude that Icat is a Na+ current that passes through a delayed rectifier K+ channel when intracellular K+ is reduced to below 30 mM. At intracellular K+ concentrations between 1 and 30 mM, PK/PNa remained constant while the conductance at -50 mV varied from 80 to 0% of maximum. These data suggest that the high selectivity of these channels for K+ over Na+ is due to the inability of Na+ to compete with K+ for an intracellular binding site, rather than a barrier that excludes Na+ from entry into the channel or a barrier such as a selectivity filter that prevents Na+ ions from passing through the channel.  相似文献   

6.
The permeation of monovalent cations through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions. For monovalent cations presented on the cytoplasmic side of the channel, the permeability ratios with respect to extracellular Na followed the sequence NH4 > K > Li > Rb = Na > Cs while the conductance ratios at +50 mV followed the sequence Na approximately NH4 > K > Rb > Li = Cs. These patterns are broadly similar to the amphibian rod channel. The symmetry of the channel was tested by presenting the test ion on the extracellular side and using Na as the common reference ion on the cytoplasmic side. Under these biionic conditions, the permeability ratios with respect to Na at the intracellular side followed the sequence NH4 > Li > K > Na > Rb > Cs while the conductance ratios at +50 mV followed the sequence NH4 > K approximately Na > Rb > Li > Cs. Thus, the channel is asymmetric with respect to external and internal cations. Under symmetrical 120 mM ionic conditions, the single-channel conductance at +50 mV ranged from 58 pS in NH4 to 15 pS for Cs and was in the order NH4 > Na > K > Rb > Cs. Unexpectedly, the single-channel current-voltage relation showed sufficient outward rectification to account for the rectification observed in multichannel patches without invoking voltage dependence in gating. The concentration dependence of the reversal potential for K showed that chloride was impermeant. Anomalous mole fraction behavior was not observed, nor, over a limited concentration range, were multiple dissociation constants. An Eyring rate theory model with a single binding site was sufficient to explain these observations.  相似文献   

7.
Single Na+ channels from rat skeletal muscle were inserted into planar lipid bilayers in the presence of either 200 nM batrachotoxin (BTX) or 50 microM veratridine (VT). These toxins, in addition to their ability to shift inactivation of voltage-gated Na+ channels, may be used as probes of ion conduction in these channels. Channels modified by either of the toxins have qualitatively similar selectivity for the alkali cations (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). Biionic reversal potentials, for example, were concentration independent for all ions studied. Na+/K+ and Na+/Rb+ reversal potentials, however, were dependent on the orientation of the ionic species with respect to the intra- or extracellular face of the channel, whereas Na+/Li+ biionic reversal potentials were not orientation dependent. A simple, four-barrier, three-well, single-ion occupancy model was used to generate current-voltage relationships similar to those observed in symmetrical solutions of Na, K, or Li ions. The barrier profiles for Na and Li ions were symmetric, whereas that for K ions was asymmetric. This suggests the barrier to ion permeation for K ions may be different than that for Na and Li ions. With this model, these hypothetical energy barrier profiles could predict the orientation-dependent reversal potentials observed for Na+/K+ and Na+/Rb+. The energy barrier profiles, however, were not capable of describing biionic Na/Li ion permeation. Together these results support the hypothesis that Na ions have a different rate determining step for ion permeation than that of K and Rb ions.  相似文献   

8.
Ion permeation and conduction were studied using whole-cell recordings of the M-current (I(M)) and delayed rectifier (IDR), two K+ currents that differ greatly in kinetics and modulation. Currents were recorded from isolated bullfrog sympathetic neurons with 88 mM [K+]i and various external cations. Selectivity for extracellular monovalent cations was assessed from permeability ratios calculated from reversal potentials and from chord conductances for inward current. PRb/PK was near 1.0 for both channels, and GRb/GK was 0.87 +/- 0.01 for IDR but only 0.35 +/- 0.01 for I(M) (15 mM [Rb+]o or [K+]o). The permeability sequences were generally similar for I(M) and IDR: K+ approximately Rb+ > NH4+ > Cs+, with no measurable permeability to Li+ or CH3NH3+. However, Na+ carried detectable inward current for IDR but not I(M). Nao+ also blocked inward K+ current for IDR (but not IM), at an apparent electrical distance (delta) approximately 0.4, with extrapolated dissociation constant (KD) approximately 1 M at 0 mV. Much of the instantaneous rectification of IDR in physiologic ionic conditions resulted from block by Nao+. Extracellular Cs+ carried detectable inward current for both channel types, and blocked I(M) with higher affinity (KD = 97 mM at 0 mV for I(M), KD) approximately 0.2 M at 0 mV for IDR), with delta approximately 0.9 for both. IDR showed several characteristics reflecting a multi-ion pore, including a small anomalous mole fraction effect for PRb/PK, concentration-dependent GRb/GK, and concentration- dependent apparent KD's and delta's for block by Nao+ and Cso+. I(M) showed no clear evidence of multi-ion pore behavior. For I(M), a two- barrier one-site model could describe permeation of K+ and Rb+ and block by Cso+, whereas for IDR even a three-barrier, two-site model was not fully adequate.  相似文献   

9.
Crystal structures of the tetrameric KcsA K+ channel reveal seven distinct binding sites for K+ ions within the central pore formed at the fourfold rotational symmetry axis. Coordination of an individual K+ ion by eight protein oxygen atoms within the selectivity filter suggests that ion-subunit bridging by cation-oxygen interactions contributes to structural stability of the tetramer. To test this hypothesis, we examined the effect of inorganic cations on the temperature dependence of the KcsA tetramer as monitored by SDS-PAGE. Inorganic cations known to permeate or strongly block K+ channels (K+, Rb+, Cs+, Tl+, NH4+, Ba2+, and Sr2+) confer tetramer stability at higher temperatures (T0.5 range = 87 degrees C to >99 degrees C) than impermeant cations and weak blockers (Li+, Na+, Tris+, choline+; T0.5 range = 59 degrees C to 77 degrees C). Titration of K+, Ba2+, and other stabilizing cations protects against rapid loss of KcsA tetramer observed in 100 mM choline Cl at 90 degrees C. Tetramer protection titrations of K+, Rb+, Cs+, Tl+, and NH4+ at 85 degrees C or 90 degrees C exhibit apparent Hill coefficients (N) ranging from 1.7 to 3.3 and affinity constants (K0.5) ranging from 1.1 to 9.6 mM. Ba2+ and Sr2+ titrations exhibit apparent one-site behavior (N congruent with 1) with K0.5 values of 210 nM and 11 microM, respectively. At 95 degrees C in the presence of 5 mM K+, titration of Li+ or Na+ destabilizes the tetramer with K0.5 values of 57 mM and 109 mM, respectively. We conclude that specific binding interactions of inorganic cations with the selectivity filter are an important determinant of tetramer stability of KscA.  相似文献   

10.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-dependent ATPase activity. The order of effectiveness of monovalent cations tested at saturating concentrations in increasing rate of phosphoprotein decomposition is: K+, Na+ greater than Rb+, NH4+ greater than Cs+ greater than Li+, choline+, Tris+.  相似文献   

11.
The multi-ion nature of the pore in Shaker K+ channels.   总被引:7,自引:3,他引:4       下载免费PDF全文
We have investigated some of the permeation properties of the pore in Shaker K channels. We determined the apparent permeability ratio of K+, Rb+, and NH4+ ions and block of the pore by external Cs+ ions. Shaker channels were expressed with the baculovirus/Sf9 expression system and the channel currents measured with the whole-cell variant of the patch clamp technique. The apparent permeability ratio, PRb/PK, determined in biionic conditions with internal K+, was a function of external Rb+ concentration. A large change in PRb/PK occurred with reversed ionic conditions (internal Rb+ and external K+). These changes in apparent permeability were not due to differences in membrane potential. With internal K+, PNH4/PK was not a function of external NH4+ concentration (at least over the range 50-120 mM). We also investigated block of the pore by external Cs+ ions. At a concentration of 20 mM, Cs+ block had a voltage dependence equivalent to that of an ion with a valence of 0.91; this increased to 1.3 at 40 mM Cs+. We show that a 4-barrier, 3-site permeation model can simulate these and many of the other known properties of ion permeation in Shaker channels.  相似文献   

12.
Conduction properties of the M-channel in rat sympathetic neurons.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated the conduction properties of the M-channel in rat superior cervical ganglion neurons. Reversal potentials measured under bi-ionic conditions yielded a permeation sequence of Tl > K > Rb > Cs > NH4 > Na. Slope conductances gave a conductance sequence of K > Tl > NH4 > Rb > Cs. M-current was shown to exhibit a number of features atypical of potassium channels. First, the conduction of monovalent cations relative to K was very low. Second, the nature of the permeant ion did not affect the deactivation kinetics. Third, M-current did not exhibit anomalous mole-fraction behavior, a property suggestive of a multi-ion pore. Finally, external Ba, which is a blocker of M-current, showed a preferential block of outward current and had much less effect on inward current. The permeability sequence of the M-channel is very similar to other K-selective channels, implying a high degree of conservation in the selectivity filter. However, other conduction properties suggest that the pore structure outside of the selectivity filter is very different from previously cloned potassium channels.  相似文献   

13.
Ca(2+)-activated K+[K(Ca)] channels in resting and activated human peripheral blood T lymphocytes were characterized using simultaneous patch-clamp recording and fura-2 monitoring of cytosolic Ca2+ concentration, [Ca2+]i. Whole-cell experiments, using EGTA-buffered pipette solutions to raise [Ca2+]i to 1 microM, revealed a 25-fold increase in the number of conducting K(Ca) channels per cell, from an average of 20 in resting T cells to > 500 channels per cell in T cell blasts after mitogenic activation. The opening of K(Ca) channels in both whole-cell and inside-out patch experiments was highly sensitive to [Ca2+]i (Hill coefficient of 4, with a midpoint of approximately 300 nM). At optimal [Ca2+]i, the open probability of a K(Ca) channel was 0.3-0.5. K(Ca) channels showed little or no voltage dependence from - 100 to 0 mV. Single-channel I-V curves were linear with a unitary conductance of 11 pS in normal Ringer and exhibited modest inward rectification with a unitary conductance of approximately 35 pS in symmetrical 160 mM K+. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+ (1.0) > Rb+ (0.96) > NH4+ (0.17) > Cs+ (0.07). Slope conductance ratios were: NH4+ (1.2) > K+ (1.0) > Rb+ (0.6) > Cs+ (0.10). Extracellular Cs+ or Ba2+ each induced voltage-dependent block of K(Ca) channels, with block increasing at hyperpolarizing potentials in a manner suggesting a site of block 75% across the membrane field from the outside. K(Ca) channels were blocked by tetraethylammonium (TEA) applied externally (Kd = 40 mM), but were unaffected by 10 mM TEA applied inside by pipette perfusion. K(Ca) channels were blocked by charybdotoxin (CTX) with a half-blocking dose of 3-4 nM, but were resistant to block by noxiustoxin (NTX) at 1-100 nM. Unlike K(Ca) channels in Jurkat T cells, the K(Ca) channels of normal resting or activated T cells were not blocked by apamin. We conclude that while K(Ca) and voltage-gated K+ channels in the same cells share similarities in ion permeation, Cs+ and Ba2+ block, and sensitivity to CTX, the underlying proteins differ in structural characteristics that determine channel gating and block by NTX and TEA.  相似文献   

14.
Mutation of the glycines in a conserved Gly-Tyr-Gly-Asp sequence in the P-region of voltage-gated K channels has identified determinants of Na/K selectivity. But the function of the negatively charged Asp is not known because mutations at this position are not tolerated, owing to the fourfold replication of mutations in a tetrameric channel. We have successfully mutated Asp378-->Thr in a tandem dimer Kv2.1 construct to yield a twofold neutralization of charge at this site. When expressed in Xenopus oocytes, the mutated channels showed markedly altered ion conduction and blockade. Potassium conduction in the inward direction was selectively reduced, so that the instantaneous current-voltage relationship obtained in isotonic KCl became strongly outwardly rectifying. The relative permeability to Na+, PNa/PK, increased from 0.02 to 0.10 without changing the ion selectivity sequence K > Rb >> Cs >> Na. The IC50 for block by external tetraethylammonium (TEA) increased more than 100-fold without affecting block by internal TEA. We conclude that Asp378 is an essential part of a potassium ion binding site associated with the Na/K selectivity filter at the external mouth of the pore.  相似文献   

15.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   

16.
Upon depolarization, many voltage-gated potassium channels undergo a time-dependent decrease in conductance known as inactivation. Both entry of channels into an inactivated state and recovery from this state govern cellular excitability. In this study, we show that recovery from slow inactivation is regulated by intracellular permeant cations. When inactivated channels are hyperpolarized, closure of the activation gate traps a cation between the activation and inactivation gates. The identity of the trapped cation determines the rate of recovery, and the ability of cations to promote recovery follows the rank order K+ > NH4+ > Rb+ > Cs+ > Na+, TMA. The striking similarity between this rank order and that for single channel conductance suggests that these two processes share a common feature. We propose that the rate of recovery from slow inactivation is determined by the ability of entrapped cations to move into a binding site in the channel's selectivity filter, and refilling of this site is required for recovery.  相似文献   

17.
The effects of ouabain on the effectiveness of glycine, Li+, Na+, K+, Rb+, and Cs+ in the external medium in reducing the rate of entry of labeled Cs+ into frog sartorius muscles were studied. The results showed that in the absence of ouabain the effectiveness of glycine and alkali-metal ions in inhibiting labeled Cs+ entry follows the rank order: K+ greater than Cs+, Rb+ greater than Na+, Li+ greater than glycine. Exposure to ouabain in essence reverses this order which then becomes: glycine greater than Li+, Na+ greater than K+, Rb+, greater than Cs+. These results confirm the prediction of the basic electronic interpretation of drug action according to the association-induction hypothesis. In addition, it shows that the action of ouabain on the surface beta- and gamma-carboxyl groups of frog muscle mediating Cs+ entry is quite similar to its action on the cytoplasmic beta- and gamma-carboxyl groups that are the seats of K+ accumulation in the bulk phase cytoplasm as well as to its action on the cell surface beta- and gamma-carboxyl groups responsible for the generation of the resting potential. In all these cases, ouabain acts as an electron-donating cardinal adsorbent (EDC). Finally the marked increase of the binding strength of glycine on the surface beta- and gamma-carboxyl groups was used to explain the primary pharmacodynamic effect of cardiac glycosides in combating heart failure.  相似文献   

18.
Single high-conductance Ca2+-activated K+ channels from rat skeletal muscle were inserted into planar lipid bilayers, and discrete blocking by the Ba2+ ion was studied. Specifically, the ability of external K+ to reduce the Ba2+ dissociation rate was investigated. In the presence of 150 mM internal K+, 1-5 microM internal Ba2+, and 150 mM external Na+, Ba2+ dissociation is rapid (5 s-1) in external solutions that are kept rigorously K+ free. The addition of external K+ in the low millimolar range reduces the Ba2+ off-rate 20-fold. Other permeant ions, such as Tl+, Rb+, and NH4+ show a similar effect. The half-inhibition constants rise in the order: Tl+ (0.08 mM) less than Rb+ (0.1 mM) less than K+ (0.3 mM) less than Cs+ (0.5 mM) less than NH4+ (3 mM). When external Na+ is replaced by 150 mM N-methyl glucamine, the Ba2+ off-rate is even higher, 20 s-1. External K+ and other permeant ions reduce this rate by approximately 100-fold in the micromolar range of concentrations. Na+ also reduces the Ba2+ off-rate, but at much higher concentrations. The half-inhibition concentrations rise in the order: Rb+ (4 microM) less than K+ (19 microM) much less than Na+ (27 mM) less than Li+ (greater than 50 mM). The results require that the conduction pore of this channel contains at least three sites that may all be occupied simultaneously by conducting ions.  相似文献   

19.
Characteristics of cation permeation through voltage-dependent delayed rectifier K channels in squid giant axons were examined. Axial wire voltage-clamp measurements and internal perfusion were used to determine conductance and permeability properties. These K channels exhibit conductance saturation and decline with increases in symmetrical K+ concentrations to 3 M. They also produce ion- and concentration-dependent current-voltage shapes. K channel permeability ratios obtained with substitutions of internal Rb+ or NH+4 for K+ are higher than for external substitution of these ions. Furthermore, conductance and permeability ratios of NH+4 or Rb+ to K+ are functions of ion concentration. Conductance measurements also reveal the presence of an anomalous mole fraction effect for NH+4, Rb+, or Tl+ to K+. Finally, internal Cs+ blocks these K channels in a voltage-dependent manner, with relief of block by elevations in external K+ but not external NH+4 or Cs+. Energy profiles for K+, NH+4, Rb+, Tl+, and Cs+ incorporating three barriers and two ion-binding sites are fitted to the data. The profiles are asymmetric with respect to the center of the electric field, have different binding energies and electrical positions for each ion, and (for K+) exhibit concentration-dependent barrier positions.  相似文献   

20.
Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号