首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel test was developed to measure the tracheobronchial irritant activity of inhaled prostaglandins. Conscious restrained cats were challenged with seperate aerosols of PGE1, PGF, acetylcholine or isoprenaline. All of the aerosols except isoprenaline caused coughing in a concentration related manner. Tolerance developed very quickly to the tracheobronchial irritation and lasted 1–2 days for PGE1 and less than 1 day for PGF and acetylcholine. When a 3 day interval between each aerosol challenge was used, PGF was approximately 700 times more potent than acetylcholine as a tracheobronchial irritant. The highest PGE1 aerosol concentration (500 μg/ml) also caused sedation, diarrhoea and salivation. This test probably provides a useful method for evaluating the tracheobronchial irritant activity of potential prostaglandin bronchodilator analogues and for investigating the mechanism of action of prostaglandin induced tracheobronchial irritancy.  相似文献   

2.
Specific receptors for prostaglandins in airways   总被引:9,自引:0,他引:9  
The relative bronchomotor activities of prostaglandins (PG) E1, E2, F2 alpha, F2 beta and I2 and of three synthetic E prostaglandin analogues (TR4161, TR4367 and TR4752) were determined on a large number of isolated preparations of guinea-pig trachea and human bronchial muscle. Each prostaglandin was capable of eliciting both contraction and relaxation, the relative incidence of these responses partly depending on concentration. TR4161 was a virtually pure relaxant; TR4367 was virtually devoid of bronchomotor activity; and TR4752 was a potent relaxant, devoid of contractant activity. The results also provided distinct rank orders of approximate potency for contraction and relaxation. Tachyphylaxis to the relaxant activities of PGE1 and TR4752 confirmed the underlying contractant activity of the two natural E prostaglandins. Antagonism with a high dose of indomethacin of the contractant actions of PGE1, PGE2 and PGF2 alpha confirmed the presence of relaxant activities in each. Inhaled aerosols of the same natural and synthetic prostaglandins were evaluated for irritant activity on the airways, using the cough response of the restrained conscious cat. All of them, except TR4161, elicited severe coughing. The rank order of potencies for irritancy differed from those for tracheobronchial contractant and relaxant activities. These findings suggest that the three responses studied arise from the activation of three distinct PG receptors in the airways. We propose the terms chi (contractant), psi (relaxant) and omega (irritant) for these putative receptors for prostaglandins or possibly other prostanoids.  相似文献   

3.
PGE1 relaxed isolated human circular bronchial muscle over a wide concentration range as did isoprenaline. Surprisingly isoprenaline was more potent than PGE1. PGF2alpha weakly contracted this muscle preparation whereas histamine was more potent. PGE2, however, produced paradoxical results, relaxing some tissues and contracting others, always in a concentration-related manner irrespective of tissue tone. In preparations that contracted to PGE2, tachyphylaxis induced to PGF2alpha also applied to PGE2, but did not affect PGE1 relaxations of histamine contractions. These findings suggest that pge2 can stimulate either PGF2alpha or PGE1 receptors of isolated human bronchial muscle.  相似文献   

4.
The outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)were similar from the day 22 guinea-pig placenta and sub-placenta in culture, except for PGE2 output from the sub-placenta which was lower. Between days 22 and 29 of pregnancy, the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)during the initial 2 h culture period increased 6.9-, 1.1- and 3.2-fold, respectively, from the placenta, and 2.1-, 1.4- and 2.2-fold, respectively, from the sub-placenta. Therefore, there was a relatively specific increase in PGF(2 alpha)production by the guinea-pig placenta between days 22 and 29 of pregnancy. The output of PGFM from the cultured placenta also increased between days 22 and 29, indicating that the increase in PGF(2 alpha)output was due to increased synthesis rather than to decreased metabolism. By comparing the amounts of prostaglandins produced by tissue homogenates during a 1 h incubation period, it appears that there is approximately a 2-fold increase in the amount of prostaglandin H synthase (PGHS) present in the guinea-pig placenta between days 22 and 29. NS-398 (a specific inhibitor of PGHS-2) and indomethacin (an inhibitor of both PGHS-1 and PGHS-2) both inhibited prostaglandin production by homogenates of day 22 and day 29 placenta. Indomethacin was more effective than NS-398, except for their actions on PGF(2 alpha)production by the day 29 placenta where indomethacin and NS-398 were equiactive. Indomethacin and NS-398 were both very effective at inhibiting the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)from the day 22 and day 29 placenta and sub-placenta in culture, indicating that prostaglandin production by the guinea-pig placenta and sub-placenta in culture is largely dependent upon the activity of PGHS-2. The high production of PGF(2 alpha)by the day 29 placenta is not dependent on the continual synthesis of fresh protein(s), as inhibitors of protein synthesis did not reduce PGF(2 alpha)output from the day 29 guinea-pig placenta in culture.  相似文献   

5.
We previously reported that urotensin II induced biphasic (brief- and long-lasting) contractions and the brief contraction was mediated by acetylcholine release from ganglionic cholinergic neurons in a segment of guinea-pig ileum. In the present work, we studied the mechanism contributing to long-lasting contractions induced by urotensin II. Treatment with 0.1 microM tetrodotoxin, 300 nM omega-conotoxin GVIA (an inhibitor of N-type Ca2+ channels) and 10 microM indomethacin (an inhibitor of cyclooxygenases) markedly inhibited 100 nM urotensin II-induced long-lasting contractions. The addition of 1 microM prostaglandin F2alpha (PGF2alpha) caused a limited brief contraction following long-lasting contraction, while 1 microM PGE2 induced marked biphasic contractions. Treatment with neurotoxins inhibited the long-lasting contractions induced by PGF2alpha and PGE2 without changing the PGE2-induced brief contractions. Treatment with 1 microM atropine markedly inhibited the urotensin II- and PGF2alpha-induced long-lasting contractions, but was less effective on the PGE2 responses. Treatment with a phospholipase A2 inhibitor decreased the urotensin II-induced contractions. These findings suggest that urotensin II induces, at least partially, long-lasting contractions via PG-sensitive cholinergic neurons and muscarinic acetylcholine receptors in the ileum.  相似文献   

6.
We studied the effect of prostaglandin F2 alpha (PGF2 alpha) on the responsiveness of pulmonary airways in dogs. Airway responsiveness was assessed by determining the bronchoconstrictor response to increasing concentrations of acetylcholine aerosol delivered to the airways. In each of five dogs, we determined responsiveness during treatment with physiologic saline, histamine, or PGF2 alpha aerosols. The doses of histamine and PGF2 alpha were determined by establishing the largest dose of each which could be given to the dog without causing bronchoconstriction (subthreshold doses). We found that airway responsiveness was not significantly different during histamine treatment than after saline, however, responsiveness increased during treatment with PGF2 alpha. In addition, the hyperresponsiveness induced by PGF2 alpha was prevented by pretreatment with the ganglion blocking drug hexamethonium (5 mg/kg given intravenously). The results show that PGF2 alpha specifically increases the responsiveness of pulmonary airways in doses that do not cause bronchoconstriction, and suggest that the hyperresponsiveness involves a neural mechanism such as increased responsiveness of airway sensory nerves.  相似文献   

7.
Luteal cells were obtained by digestion of luteal tissue of cyclic (day 12) and early pregnant (days 12, 20 and 30) pigs. Suspensions of the dispersed luteal cells (5 x 10(4) cells ml-1) were incubated for 2 h in minimum essential medium (MEM) alone (control) and MEM with different concentrations of prostaglandin F2 alpha (PGF2 alpha) and PGE2 (0.01, 0.1, 1, 10, 100 and 1000 ng ml-1) and luteinizing hormone (LH) 100 and 1000 ng ml-1, or with combinations of LH + PGF2 alpha and LH + PGE2. Net progesterone production was measured in the incubation media by direct radioimmunoassay. The overall response pattern of the luteal cells to exogenous hormones on day 12 of the oestrous cycle and pregnancy differed (P < 0.05) from treatment on day 20 and 30 of pregnancy. In general progesterone production was higher (P < 0.05) and the response to PGF2 alpha and PGE2 treatment was most obvious on day 12 of the oestrous cycle and pregnancy. Overall, PGF2 alpha stimulated progesterone production in a dose-dependent manner (P < 0.05). The response to PGE2 was of a quadratic nature (P < 0.05) in which the lowest and the highest doses of PGE2 were associated with a greater production of progesterone than were the intermediate doses. Treatment of luteal cells with PGF2 alpha + LH or PGE2 + LH caused overall inhibition (P < 0.05) of progesterone production compared with treatment with each hormone alone. This interaction was not affected by the dose of LH used. These findings indicate that PGF2 alpha and PGE2 are involved in the autocrine control of corpus luteum function.  相似文献   

8.
The outputs of PGF(2 alpha), PGE(2) and 6-keto-PGF(1 alpha) were higher from the day 29 guinea-pig placenta than from the sub-placenta in culture, with PGF(2 alpha)being the major prostaglandin produced by the placenta. Lack of extracellular calcium reduced the production of all three prostaglandins by the sub-placenta and 6-keto-PGF(1 alpha) production by the placenta, but had no effect on the production of PGF(2 alpha) and PGE(2) by the placenta. EGTA (a calcium chelator) and a low concentration (30 microM) of TMB-8 (an intracellular calcium antagonist) generally inhibited prostaglandin output from the placenta and sub-placenta at various time points during culture, although EGTA had no effect on PGE(2) output from the placenta. Trifluoperazine and W-7 (calmodulin inhibitors) had no inhibitory effect on the outputs of PGF(2 alpha) and PGE(2) from the placenta, nor on the outputs of any prostaglandin from the sub-placenta. However, these two compounds inhibited the output of 6-keto-PGF(1 alpha) from the placenta. Nifedipine and verapamil (calcium channel blocking drugs) generally reduced the outputs of prostaglandins from the placenta and sub-placenta, except verapamil had no inhibitory effect on PGF(2 alpha) output from the sub-placenta. Gonadotrophin-releasing hormone (GnRH) did not stimulate the output of prostaglandins from the placenta, and tended to have a weak inhibitory action on this tissue. On the sub-placenta, GnRH had an initial inhibitory action on the outputs of PGF(2alpha) and 6-keto-PGF(1 alpha), which was then followed by a stimulation of the outputs of PGF(2 alpha) and, to a lesser extent, of PGE(2).  相似文献   

9.
PGE2 metabolism was examined in rabbit renal slices and cell suspensions from the outer medulla, enriched (TALH) and depleted (OMC) for the thick ascending limb of Henle's loop. Metabolism was negligible in intact cells, either OMC or TALH fractions. However, in OMC and TALH homogenates, transformation of PGE2 to PGF2 alpha by NADPH-dependent prostaglandin E-9 ketoreductase (PGE-9KR) was observed at a PGE2 concentration of 4 X 10(-9) M. This activity was not reversible and was enriched ten-fold in the TALH with 41% of PGE2 transformed to PGF2 alpha after 30 min incubation. PGF2 alpha formation from PGE2 could not be detected in homogenates of cortex, medulla or papilla. PGE-9KR activity, particularly in the thick ascending limb, may be a source of PGF2 alpha in urine.  相似文献   

10.
We have hypothesized that two of the endogenously synthesized endometrial prostaglandins (PGs), prostaglandin F2 alpha (PGF2 alpha), and prostaglandin E1 (PGE1), play a regulatory role in growth control of the rabbit endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used to examine the possible role of these PGs in the mechanism of action of 17 beta-estradiol on DNA synthesis. Towards this end, binding, second messenger and DNA synthesis experiments were performed. 17 beta-estradiol stimulation resulted in a time dependent (optimal: approximately 6 h) and 17 beta-estradiol concentration dependent (optimal: approximately 10(-7) M 17 beta-estradiol in phenol red-containing medium) increase in [3H]PGF2 alpha binding. Scatchard type analysis of the binding data revealed an increase in receptor number while the receptor affinity for [3H]PGF2 alpha remained the same as in the control treated cultures. This 17 beta-estradiol stimulated increase in PGF2 alpha receptor allowed a suboptimal concentration of PGF2 alpha (10(-9) M) to increase intracellular levels of inositol polyphosphates, while by itself this concentration of PGF2 alpha caused no significant change in intracellular inositol polyphosphate levels. 17 beta-estradiol, alone among the several studied steroid hormones, could increase [3H]PGF2 alpha binding. Proliferation studies revealed that, in these primary cultures of rabbit endometrium, 17 beta-estradiol could increase DNA synthesis but not in the presence of indomethacin, unless PGF2 alpha was added to the medium at a concentration (10(-10) M) near or above what is normally accumulated in the medium by these cultures. In the absence of 17 beta-estradiol stimulation, addition of these same low concentrations of PGF2 alpha had no effect on DNA synthesis. Apparently, through its effect on the PGF2 alpha receptor, 17 beta-estradiol enhances the PGF2 alpha stimulated DNA synthesis response approximately 100 fold. The DNA synthesis induced by 17 beta-estradiol can be inhibited by PGE1, as can PGF2 alpha-induced DNA synthesis. We propose that 17 beta-estradiol may be mediating its mitogenic effect through an alteration of the prostaglandin agonist:antagonist control of proliferation in rabbit endometrial cultures. In addition we suggest that, if 17 beta-estradiol acts to increase PGF2 alpha, receptors as part of its mode of action, this may be of importance in other tissues possessing both prostaglandin and 17 beta-estradiol receptors.  相似文献   

11.
The effects of PGE2 and PGF2alpha on the isoprenaline induced elevation of myocardial contractility were studied on hearts of anesthetized dogs. The steady state effects were determined after single or simultaneous infusion of the substances. Two indices of contractility were used for the quantification of inotropic effects. PGE2 but not PGF2alpha showed positivinotropic effects. PGE2 significantly inhibited the inotropic responses induced by isoprenaline (p less than 0,01); whereas PGF2alpha was without any effect in this direction. The results are discussed with respect of a postjunctional action of PGE2.  相似文献   

12.
Intratesticular injection of prostaglandin E2 (PGE2) and F2 alpha (PGF2 alpha) caused stimulation of ornithine decarboxylase (ODC) activity in the testis of immature rats. PGE2 at a dose of 10 microgram per testis was maximally effective 2 hours after the injection. Dibutyryl cyclic AMP (cAMP) and 1 methyl, 3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor, also stimulated ODC activity. Simultaneous injection of PGE2 and FSH or LH caused additional stimulation of ODC activity. Similarly injection of PGE2 in addition to cAMP or MIX also caused increased stimulation of ODC. Indomethacin (IM, 60 microgram/testis) inhibited LH, FSH or cAMP induced ODC activity. However, IM at the same dose inhibited the synthesis of total proteins. These results suggest that PGE2 and PGF2 alpha stimulate the activity of ODC. The action of prostaglandins may be independent of the action of gonadotropic hormones. cAMP appears to mediate the action of prostaglandins in the testis of rat.  相似文献   

13.
S Murota  M Abe 《Prostaglandins》1978,16(3):389-396
The mechanism of the stimulatory effect of prostaglandin PG) F2alpha on the production of hexosamine-containing substances by cultured fibroblasts was studied with special reference to adenosine 3':5'-cyclic monophosphate (cAMP). At the stationary phase, the cells were exposed for 6 hrs to PGF2alpha, E1, cAMP or dibutyryl-cAMP in a wide range of concentrations. cAMP itself showed a slight stimulation on the production of hexosamine-containing substances, and the effect was enhanced by using the dibutyryl derivative. PGF2alpha had much a greater capacity than either the exogeneous cAMP or the dibutyryl-cAMP for enhancing the production of hexosamine-containing substances. To know whether cAMP is involved in the stimulatory effect of PGF2alpha, intracellular cAMP level was concomitantly measured in both PGF2alpha and PGE1 treated cultures. Although the cellular cAMP level in PGE1 treated cultures was much higher than that in the PGF2alpha treated cultures, the stimulatory effect on the production of hexosamine-containing substances in PGE1 treated cultures was always much smaller than that in the PGF2alpha treated cultures. Moreover, PGF2alpha had a significant stimulatory effect on the production of hexosamine-containing substances even at a low concentration as 100 pg/ml, which is small enough not to increase any cellular cAMP level. From these results, it was concluded that the stimulatory effect of PGF2alpha on the production of hexosamine-containing substances by cultured fibroblasts is not mediated by cAMP and is caused by a mechanism different from that caused by cAMP.  相似文献   

14.
The purpose of these experiments was to characterize the contractile response of longitudinal muscle from the estrogen-dominated rat uterus to natural and synthetic prostanoids. The biological significance is 1) to provide evidence for or against a physiological role for each natural prostanoid in the regulation of myometrial activity, 2) to determine if each prostanoid has pharmacological potential for the manipulation of myometrial activity, and 3) to understand the structural requirements for prostanoid action on the myometrium. All analogs tested produced excitation of the myometrium in vitro through what appeared to be a direct action on the muscle. The order of potency of the natural prostanoids was prostaglandin (PG) F2 alpha = PGD2 = PGE2 = PGE1 greater than PGA2 = PGB2 = 6-keto-PGF1 alpha. This order of potency was not consistent with any single currently recognized prostanoid receptor. Furthermore, PGF2 alpha had an EC50 (effective concentration that produces 50% of the maximal response) of 0.5 microM, which was low in comparison to other PGF2 alpha-sensitive tissues. There were large differences in the maximum tension developed in response to the prostanoids tested, only PGF2 alpha, PGE2 and 6-keto PGF1 alpha were full agonists. Although the simplest explanation of these data was that the rat uterus contains a single novel type of prostanoid receptor, the existence of multiple receptor subtypes could not be disproved. Evidence from the effect of synthetic analogs suggested that neither thromboxane A2 nor PGI2 are physiological regulators of activity in this tissue.  相似文献   

15.
A vitamin E (alpha-tocopherol) deficient diet stimulated prostaglandin biosynthesis in coagulating rat blood. Prostaglandins were extracted from serum, purified and bioassayed. The identity of prostaglandin E2 was confirmed by gas chromatography-mass spectrometry. Withholding vitamin E from the diet caused a marked increase in PGE2 and a lesser increase in PGF2alpha production in serum. In rats maintained on diets containing different concentrations of vitamin E, serum concentrations of PGE2 and PGF2alpha were inversely related to serum concentrations of alpha-tocopherol. These data suggest that in vitro alpha-tocopherol inhibits the endogenous conversion of arachidonic acid into PGE2 and PGF2alpha. The possibility that alpha-tocopherol may inhibit the formation of endoperoxide intermediates of PGE2 and PGF2alpha biosynthesis and subsequent induction of platelet aggregation is discussed.  相似文献   

16.
The influences of age, sodium restriction and posture on 24-hour urinary excretion of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF 2 alpha), 6-keto-prostaglandin F1 alpha (6-keto-PGF 1 alpha) and thromboxane B2 (TXB2) were investigated in 111 healthy children and youngsters in the age between 1 day and 16 years. A considerable degree of variation was found in normal 24-hour urinary prostaglandin excretion in all age groups. There was no significant effect of age on the urinary excretion of prostaglandins when data were corrected for body surface area. In addition, sodium restriction and posture had no influence on the excretion of PGE2, PGF 2 alpha, 6-keto-PGF 1 alpha and TXB2. Our results indicate that in the first days of life the kidney already has the capacity to synthesize prostaglandins in amounts comparable to older children.  相似文献   

17.
By day-90, the placenta secretes half of the circulating progesterone and 85% of the circulating estradiol-17beta [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22; Weems YS, Vincent DL, Nusser K, et al. Effects of prostaglandin F(2alpha) (PGF(2alpha)) on secretion of estradiol-17beta and cortisol in 90-100 day hysterectomized, intact, or ovariectomized pregnant ewes. Prostaglandins 1994;48:139-57]. Ovariectomy (OVX) or prostaglandin (PG) F(2alpha) (PGF(2alpha)) does not abort intact or OVX 90-day pregnant ewes and PGF(2alpha) regresses the corpus luteum, but does not affect placental progesterone secretion in vivo [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22]. Luteal progesterone secretion in vitro at day-90 of pregnancy in ewes is regulated by PGE(1)and/or PGE(2), not by ovine luteinizing hormone (LH; 3). Concentrations of PGE in uterine or ovarian venous plasma averaged 6 ng/ml at 90-100 days of pregnancy in ewes [Weems YS, Vincent DL, Tanaka Y, Nusser K, Ledgerwood KS, Weems CW. Effect of prostaglandin F(2alpha) on uterine or ovarian secretion of prostaglandins E and F(2alpha) (PGE; PGF(2alpha)) in vivo in 90-100 day hysterectomized, intact or ovariectomized pregnant ewes. Prostaglandins. 1993;46:277-96]. Ovine placental PGE secretion is regulated by LH up to day-50 and by pregnancy specific protein B (PSPB) after day-50 of pregnancy [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73]. Indomethacin (INDO), a prostaglandin synthesis inhibitor [Lands WEM. The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 1979;41:633-46], lowers jugular venous progesterone [Bridges PJ, Weems YS, Kim L, et al. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24] and inferior vena cava PGE of pregnant ewes with ovaries by half at day-90 [Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. In addition, treatment of 90 day ovine diced placental slices with androstenedione in vitro increased placental estradiol-17beta, but treatment with PGF(2alpha)in vitro did not decrease placental progesterone secretion, which indicates that ovine placenta progesterone secretion is resistant to the luteolytic action of PGF(2alpha) [Weems YS, Bridges PJ, LeaMaster BR, Sasser RG, Vincent DL, Weems CW. Secretion of progesterone, estradiol-17beta, prostaglandins (PG) E (PGE), F(2alpha) (PGF(2alpha)), and pregnancy specific protein B (PSPB) by day 90 intact or ovariectomized pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:139-48]. This also explains why ovine uterine secretion of decreased around day-50 [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73], when placental estradiol-17beta secretion is increasing [Weems C, Weems Y, Vincent D. Maternal recognition of pregnancy and maintenance of gestation in sheep. In: Reproduction and animal breeding: advances and strategies. Enne G, Greppi G, Lauria A, editors, Elsevier Pub., Amsterdam 1995. p. 277-93]. Treatment of 90 day pregnant ewes with estradiol-17beta+ PGF(2alpha), but not either treatment alone, caused a linear increase in both estradiol-17beta and PGF(2alpha) and ewes were aborting [Bridges PJ, Weems YS, Kim L, Sasser RG, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24; Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. Pregnant ewes OVX on day 83 of pregnancy and placental slices cultured in vitro secretes 2-3-fold more estradiol-17beta, PSPB, PGE, and progesterone than placental slices from 90 day intact pregnant ewes, but placental PGF(2alpha) secretion by placental slices from intact or OVX ewes did not change [Denamur R, Kann G, Short R V. How does the corpus luteum of the sheep know that there is an embryo in the uterus? In: Pierrepont G, editor. Endocrinology of pregnancy and parturition, vol. 2. Cardiff, Wales, UK: Alpha Omega Pub Co.; 1973. p. 4-38]. The objective of these experiments was to determine what regulates ovine placental progesterone and estradiol-17beta secretion at day-90 of pregnancy, since the hypophysis [Casida LE, Warwick J. The necessity of the corpus luteum for maintenance of pregnancy in the ewe. J Anim Sci 1945;4:34-9] or ovaries [Weems CW, Weems YS, Randel RD. Prostaglandins and reproduction in female farm animals. Vet J 2006;171:206-28] are not necessary after day-55 to maintain pregnancy. In Experiment 1, diced placental slices from day-90 intact or OVX pregnant ewes that were ovariectomized or laparotomized and ovaries were not removed on day 83 were collected on day-90 and incubated in vitro in M-199 with Vehicle, ovine luteinizing hormone (oLH), ovine follicle stimulating hormone (oFSH), ovine placental lactogen (oPL), PGE(l), PGE(2), PGD(2), PGI(2), insulin-like growth factor (IGF) 1 or 2 (IGF(l); IGF(2)), leukotriene C(4) (LTC(4)), platelet activating factor (PAF) 16 or 18 (PAF-16; PAF-18) at doses of 0, 1, 10, or 100ng/ml for 4h. In Experiment 2, placental slices from day-90 intact and OVX (intact or OVX laporotomized 7 days earlier) pregnant ewes were incubated in vitro with vehicle, INDO, Meclofenamate (MECLO), PGE(l), PGE(2), INDO+PGE(1), MECLO+PGE(l), INDO+PGE(2), or MECLO+PGE(2) for 4h. Media were analyzed for progesterone, estradiol-17beta, PGE, or PGF(2alpha) by RIA. Hormone data in media were analyzed in Experiment 1 by a 2x3x13 and in Experiment 2 by a 2x9 Factorial Design for ANOVA. In Experiment 1, placental progesterone, PGE, or estradiol-17beta secretion were increased (P< or =0.05) two-fold by OVX. Progesterone was not increased (P> or =0.05) by any treatment other than OVX and only FSH increased (P< or =0.05) estradiol-17beta secretion by placental slices in both OVX and intact ewes 90-day pregnant ewes. In Experiment 2, INDO or MECLO decreased (P< or =0.05) placental progesterone secretion by 88% but did not decrease (P> or =0.05) placental estradiol-17beta secretion from intact or OVX ewes. PGE(l) or PGE(2) increased (P< or =0.05) progesterone secretion only in ewes treated with INDO or MECLO. It is concluded that FSH probably regulates day-90 ovine placental estradiol-17beta secretion, while PGE(l) or PGE(2) regulates day-90 placental progesterone secretion.  相似文献   

18.
Polyphloretin phosphate (PPP) has been reported by previous workers to be a specific antagonist of prostaglandin (PGE(1), PGE(2) & PGF(2 alpha))-induced contractions of isolated jird colon, gerbil colon, guinea pig ileum, and rabbit jejunum. In the present study, we examined the effect of PPP on uterotonic activities of crude papaya latex (a folkloric oxytocic), PGF(2 alpha), oxytocin, acetylcholine, and 5-hydroxytryptamine (standard oxytocics) on non-gravid, oestrogen-primed (50 microg/kg) rats in vitro. The effect of PPP on the oxytocics was evaluated qualitatively by incubating the tissues in PPP (25 - 400 microg/ml) for 20 min prior to the addition of a constant concentration of each oxytocic. PPP concentration dependently inhibited the contractile response of the uterine muscles to all the oxytocics. The inhibition was reversible after washing out the drugs. Results of the present study suggest that PPP is a non-specific and reversible antagonist of the response of non-gravid rat uterine smooth muscle to oxytocics in vitro. The specificity of PPP as a prostaglandin antagonist could therefore be species/tissue dependent.  相似文献   

19.
The effect of PGF2 alpha has been evaluated in 11 unanaesthetized unrestrained piglets and in 3 anaesthetized piglets (2-3 days old) using a barometric-plethysmographic technique. PGF2 alpha (mg 0.25/pig) was administered as aerosol for 5 min. In 3 of the unanaesthetized newborn pigs the effect of PGF2 alpha aerosol has been evaluated after indomethacin (mg 1/Kg i.v.). The vagal dependent activity of the prostaglandin was also evaluated after atropine (mg 0.08/Kg i.m.). Our results show that PGF2 alpha in newborn pigs causes hypoventilation due to a decrease in respiratory rate and to a lengthening in TE. The changes in TE are due to an increase in the incidence and duration of apneic events characterizing the respiratory activity at birth. After indomethacin PGF2 alpha does not change the breathing pattern. Atropine only partially reduces the effects of PGF2 alpha while, after anaesthesia, prostaglandin does not change the breathing pattern. Consequently our results show that PGF2 alpha in newborn animals similar to other prostaglandins acts as a depressant of respiratory activity.  相似文献   

20.
The effects of prostaglandin E1 (PGE1) and prostaglandin F1 alpha (PGF1 alpha) were studied on perfused rat hearts and isolated rat atria. Both PGE1 and PGF1 alpha produced dose-dependent increases in right atrial rate but had no effect on left atrial tension development. PGE1 (10(-4) M) increased right atrial cyclic AMP content without changing phosphorylase a activity. PGF1 alpha (10(-4) M) did not change right atrial cyclic AMP or cyclic GMP content. Both prostaglandins had no effect on left atrial cyclic nucleotide content. When infused at a rate of 1 microgram/min, PGE1 produced a time-dependent increase in cyclic AMP content in the Langendorff perfused hearts but did not alter contractile force development or phosphorylase a activity. An infusion of PGF1 alpha produced a dose-dependent increase in tension development which was secondary to a negative chronotropic effect. PGF1 alpha (1 microgram/min) did not produce any changes in cyclic nucleotide levels or phosphorylase a activity in the Langendorff perfused hearts. These results show that PGE1 can selectively increase myocardial cyclic AMP content without altering contractile force or phosphorylase activity and that PGF1 alpha does not increase rat cardiac AMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号