首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The genetic control of DNA supercoiling in Salmonella typhimurium   总被引:33,自引:3,他引:30       下载免费PDF全文
We have elucidated the genetic control of DNA supercoiling in Salmonella typhimurium. The level of superhelix density is controlled by two classes of genes. The only member of the first class is topA, the structural gene for topoisomerase I. The second class, tos, (topoisomerase one suppressor) consists of at least two genes, one of which is linked to gyrA, the structural gene for the topoisomerase subunit of DNA gyrase. Deletions of topA result in oversupercoiling of plasmid DNA. These mutations do not require the acquisition of second-site compensatory mutations to allow cell growth, in contrast to the situation in Escherichia coli. However, tos mutations, unlinked to topA, have been isolated which reduce plasmid superhelix density. We conclude that the level of DNA supercoiling in S. typhimurium is a dynamic balance between the effects of the gene products of topA (relaxation) and tos (supercoiling) which act independently of each other. Using a variety of combinations of these mutations we have constructed a series of isogenic strains, each of which has a different but precisely defined level of plasmid supercoiling; the series as a whole provides a wide range of supercoiling both above and below the wild-type level.  相似文献   

5.
DNA supercoiling and suppression of the leu-500 promoter mutation.   总被引:12,自引:4,他引:8       下载免费PDF全文
top mutations (formerly supX) eliminate DNA topoisomerase I activity and suppress the leu-500 promoter mutation in Salmonella typhimurium (K. M. Overbye, S. K. Basu, and P. Margolin, Cold Spring Harbor Symp. Quant. Biol. 47:785-791, 1983). Sublethal doses of coumermycin which reduce intracellular levels of supercoiling activity in a top mutant eliminated suppression of the leu-500 mutation. This result provides evidence that increased DNA supercoiling suppresses the leu-500 promoter mutation in top mutants.  相似文献   

6.
Integration host factor (IHF), encoded by the himA and himD genes, is a histonelike DNA-binding protein that participates in many cellular functions in Escherichia coli, including the maintenance of plasmid pSC101. We have isolated and characterized a chromosomal mutation that compensates for the absence of IHF and allows the maintenance of wild-type pSC101 in him mutants, but does not restore IHF production. The mutation is recessive and was found to affect the gene topA, which encodes topoisomerase I, a protein that relaxes negatively supercoiled DNA and acts in concert with DNA gyrase to regulate levels of DNA supercoiling. A previously characterized topA mutation, topA10, could also compensate for the absence of IHF to allow pSC101 replication. IHF-compensating mutations affecting topA resulted in a large reduction in topoisomerase I activity, and plasmid DNA isolated from such strains was more negatively supercoiled than DNA from wild-type strains. In addition, our experiments show that both pSC101 and pBR322 plasmid DNAs isolated from him mutants were of lower superhelical density than DNA isolated from Him+ strains. A concurrent gyrB gene mutation, which reduces supercoiling, reversed the ability of topA mutations to compensate for a lack of him gene function. Together, these findings indicate that the topological state of the pSC101 plasmid profoundly influences its ability to be maintained in populations of dividing cells and suggest a model to account for the functional interactions of the him, rep, topA, and gyr gene products in pSC101 maintenance.  相似文献   

7.
R P Bowater  D Chen    D M Lilley 《The EMBO journal》1994,13(23):5647-5655
  相似文献   

8.
9.
10.
11.
12.
13.
Two cases are described which indicate that RNA polymerase could alter DNA supercoiling. One occurred in a topA mutant in which abnormally high levels of plasmid supercoiling were lowered by rifampin, an inhibitor of the beta subunit of RNA polymerase. The second case involves suppression of a temperature-sensitive gyrB mutation by a rifampin-resistant allele of rpoB, the gene encoding the beta subunit of RNA polymerase. Measurements of chromosomal DNA supercoiling show that the rpoB mutation reduced DNA relaxation.  相似文献   

14.
15.
The level of DNA supercoiling is crucial for many cellular processes, including gene expression, and is determined, primarily, by the opposing actions of two enzymes: topoisomerase I and DNA gyrase. Escherichia coli strains lacking topoisomerase I (topA mutants) normally fail to grow in the absence of compensatory mutations which are presumed to relax DNA. We have found that, in media of low osmolarity, topA mutants are viable in the absence of any compensatory mutation, consistent with the view that decreased extracellular osmolarity causes a relaxation of cellular DNA. At higher osmolarity most compensatory mutations, as expected, are in the gyrA and gyrB genes. The only other locus at which compensatory mutations arise, designated toc, is shown to involve the amplification of a region of chromosomal DNA which includes the tolC gene. However, amplification of tolC alone is insufficient to explain the phenotypes of toc mutants. tolC insertion mutations alter the distribution of plasmid topoisomers in vivo. This effect is probably indirect, possibly a result of altered membrane structure and an alteration in the cell's osmotic barrier. As tolC is a highly pleiotropic locus, affecting the expression of many genes, it is possible that some of the TolC phenotypes are a direct result of this topological change. The possible relationship between toc and tolC mutations, and the means by which tolC mutations might affect DNA supercoiling, are discussed.  相似文献   

16.
17.
A Promoter Relay Mechanism for Sequential Gene Activation   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

18.
Role of DNA superhelicity in partitioning of the pSC101 plasmid   总被引:24,自引:0,他引:24  
C A Miller  S L Beaucage  S N Cohen 《Cell》1990,62(1):127-133
Previous work has shown that a cis-acting locus (termed par for partitioning) on the pSC101 plasmid accomplishes its stable inheritance in dividing cell populations. We report here that the DNA of pSC101 derivatives lacking the par region shows a decrease in overall superhelical density as compared with DNA of wild-type pSC101. Chemicals and bacterial mutations that reduce negative DNA supercoiling increase the rate of loss of par plasmids and convert normally stable plasmids that have minimal par region deletions into unstable replicons. topA gene mutations, which increase negative DNA supercoiling, reverse the instability of partition-defective plasmids that utilize the pSC101, p15A, F, or oriC replication systems. Our observations show that the extent of negative supercoiling of plasmid DNA has major effects on the plasmid's inheritance and suggest a mechanism by which the pSC101 par region may exert its stabilizing effects.  相似文献   

19.
TheSalmonella typhimurium leu-500 auxotrophic mutant grew when cultivated in minimal medium anaerobically, but not aerobically. This mutant carries an AT CG mutation in the Pribnow box of the promoter region of the leucine operon and was found to be suppressible by anaerobic conditions. Analysis of the anaerobic gases revealed that hydrogen in the anaerobic gas mixture (85% N2, 10% CO2, 5% H2) is essential for the suppression of theleu-500 mutation. Whenleu-500 mutant cells were incubated in the presence of the hydrogen gas, the synthetic rates for the first and last gene products of theleu-500 operon were similar to those of the wild-type cells. It was concluded that the entire leucine operon was efficiently expressed inleu-500 when the cells were grown under the hydrogen gas-containing anaerobic environment. Thus, theleu-500 promoter mutant is a model system for regulation of gene expression by a specific atmospheric environment, i.e., hydrogen gas found in the anaerobic environment.  相似文献   

20.
Previous work has shown that deletion of the partition (par) locus of plasmid pSC101 results in decreased overall superhelical density of plasmid DNA and concommitant inability of the plasmid to be stably inherited in populations of dividing cells. We report here that the biological effects of par correlate specifically with its ability to generate supercoils in vivo near the origin of pSC101 DNA replication. Using OsO4 reactivity of nucleotides adjoining 20 bp (G-C) tracts introduced into pSC101 DNA to measure local DNA supercoiling, we found that the wild type par locus generates supercoiling near the plasmid's replication origin adequate to convert a (G-C) tract in the region to Z form DNA. A 4 bp deletion that decreases par function, but produces no change in the overall superhelicity of pSC101 DNA as determined by chloroquine/agarose gel analysis, nevertheless reduced (G-C) tract supercoiling sufficiently to eliminate OsO4 reactivity. Mutation of the bacterial topA gene, which results in stabilized inheritance of par-deleted plasmids, restored supercoiling of (G-C) tracts in these plasmids and increased OsO4 reactivity in par+ replicons. Removal of par to a site more distant from the origin decreased supercoiling in a (G-C) tract adjacent to the origin and diminished par function. Collectively, these findings indicate that par activity is dependent on its ability to produce supercoiling at the replication origin rather than on the overall superhelical density of the plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号