首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor suppression by the p53 protein largely depends on the elimination of damaged cells by apoptosis. Mutations in the polyproline region (PPR) of p53 impair its apoptotic function. Deletion of the PPR renders p53 more sensitive to inhibition by Mdm2 via an unknown mechanism. We have explored the mechanism by which the PPR modulates the p53/Mdm2 loop. Proline 82 of p53 was identified to be essential for its interaction with the checkpoint kinase 2 (Chk2) and consequent phosphorylation of p53 on serine 20, following DNA damage. These physical and functional interactions are regulated by Pin1 through cis-trans isomerization of proline 82. Our study unravels the pathway by which Pin1 activates p53 in response to DNA damage and explains how Pin1 protects p53 from Mdm2. Further, we propose a role for Pin1-dependent induction of p53 conformational change as a mechanism responsible for the enhanced interaction between p53 and Chk2 following DNA damage. Importantly, our findings elucidate the selection for mutations in the Pin1 target Thr81/Pro82 motif within the PPR of p53 in human cancer.  相似文献   

3.
Inactivation of the Arf-Mdm2-p53 tumor suppressor pathway is a necessary event for tumorigenesis. Arf controls Mdm2, which in turn regulates p53, but Arf and Mdm2 also have p53-independent functions that affect tumor development. Moreover, inhibition of oncogene-induced tumorigenesis relies on Arf and p53, but the requirements of Arf and p53 in tumor development initiated in the absence of overt oncogene overexpression and the role of Mdm2 in this process remain unclear. In a series of genetic experiments in mice with defined deficiencies in Arf, Mdm2 and/or p53, we show Mdm2 haploinsufficiency significantly delayed tumorigenesis in mice deficient in Arf and p53. Mdm2 heterozygosity significantly inhibited tumor development in the absence of Arf, and in contrast to Myc oncogene-driven cancer, this delay in tumorigenesis could not be rescued with the presence of one allele of Arf. Notably, Mdm2 haploinsufficieny blocked the accelerated tumor development in Arf deficient mice caused by p53 heterozygosity. However, tumorigenesis was not inhibited in Mdm2 heterozygous mice lacking both alleles of p53 regardless of Arf status. Surprisingly, loss of Arf accelerated tumor development in p53-null mice. Tumor spectrum was largely dictated by Arf and p53 status with Mdm2 haploinsufficiency only modestly altering the tumor type in some of the genotypes and not the number of primary tumors that arose. Therefore, the significant effects of Mdm2 haploinsufficiency on tumor latency were independent of Arf and required at least one allele of p53, and an Mdm2 deficiency had minor effects on the types of tumors that developed. These data also demonstrate that decreased levels of Mdm2 are protective in the presence of multiple genetic events in Arf and p53 genes that normally accelerate tumorigenesis.  相似文献   

4.
Mdm2 and Mdm4 loss regulates distinct p53 activities   总被引:1,自引:0,他引:1  
Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2(-/-) and Mdm4(-/-) embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53(-/-) mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities.  相似文献   

5.
6.
Azurin, a bacterial protein, can be internalized in cancer cells and induce apoptosis. Such anticancer effect is coupled to the formation of a complex with the tumour‐suppressor p53. The mechanism by which azurin stabilizes p53 and the binding sites of their complex are still under investigation. It is also known that the predominant mechanism for p53 down‐regulation implies its association to Mdm2, the main ubiquitin ligase affecting its stability. However, the p53/Mdm2 interaction, occurring at the level of both their N‐terminal domains, has been characterized so far by experiments involving only partial domains of these proteins. The relevance of the p53/Mdm2 complex as a possible target of the anticancer therapies requires a deeper study of this complex as made up of the two entire proteins. Moreover, the apparent antagonist action of azurin against Mdm2, with respect of p53 regulation, might suggest the possibility that azurin binds p53 at the same site of Mdm2, preventing in such a way p53 and Mdm2 from association and thus p53 from degradation. By following the interaction of the two entire proteins by atomic force spectroscopy, we have assessed the formation of a specific complex between p53 and Mdm2. We found for it a binding strength and a dissociation rate constant typical of dynamical protein–protein interactions and we observed that azurin, even if capable to bind p53, does not compete with Mdm2 for the same binding site on p53. The formation of the p53/Mdm2/azurin ternary complex might suggest an alternative anti‐cancer mechanism adopted by azurin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
Mdm2 promotes ubiquitination of the tumor suppressor p53 and can function as an oncogene by largely downregulating p53. Although a p53-independent role of Mdm2 has been reported, the underlying mechanism remains unclear. In the present study, we indicated that Mdm2 is involved in p53-independent carcinogenesis via downregulation of pRB. Expression of pRB showed an apparent inverse correlation with Mdm2 expression in 30 patients with non-small cell lung cancer. There were some cases with the p53 mutations in which a high level of Mdm2 and a low level of pRB were expressed. Mdm2 promoted ubiquitination of pRB in cells without wild-type p53. Furthermore, pRB-mediated G1 arrest in a p53-deficient cell line, SRB1, was significantly enhanced by a mutant Mdm2 that lacks pRB ubiquitination activity. Soft-agar colony formation activity of p53-knockout MEF was increased by wild-type Mdm2 but not mutant Mdm2. These findings suggest that overexpression of Mdm2 can perturb a RB pathway regardless of the p53 gene status, promoting carcinogenesis.  相似文献   

10.
11.
The tumor suppressor p53 plays a prominent role in the protection against cancer. The activity of p53 is mainly controlled by the ubiquitin E3 ligase Mdm2, which targets p53 for proteasomal degradation. However, the regulation of Mdm2 remains not well understood. Here, we show that MARCH7, a RING domain‐containing ubiquitin E3 ligase, physically interacts with Mdm2 and is essential for maintaining the stability of Mdm2. MARCH7 catalyzes Lys63‐linked polyubiquitination of Mdm2, which impedes Mdm2 autoubiquitination and degradation, thereby leading to the stabilization of Mdm2. MARCH7 also promotes Mdm2‐dependent polyubiquitination and degradation of p53. Furthermore, MARCH7 is able to regulate cell proliferation, DNA damage‐induced apoptosis, and tumorigenesis via a p53‐dependent mechanism. These findings uncover a novel mechanism for the regulation of Mdm2 and reveal MARCH7 as an important regulator of the Mdm2–p53 pathway.  相似文献   

12.
13.
14.
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.  相似文献   

15.
Mdm2 directly regulates the p53 tumor suppressor. However, Mdm2 also has p53-independent activities, and the pathways that mediate these functions are unresolved. Here we report the identification of a specific association of Mdm2 with Mre11, Nbs1, and Rad50, a DNA double strand break repair complex. Mdm2 bound to the Mre11-Nbs1-Rad50 complex in primary cells and in cells containing inactivated p53 or p14/p19ARF, a regulator of Mdm2. Further analysis revealed that Mdm2 directly bound to Nbs1 but not to Mre11 or Rad50. Amino acids 198-314 of Mdm2 were required for Mdm2/Nbs1 association, and neither the N terminus forkhead-associated and breast cancer C-terminal domains nor the C terminus Mre11 binding domain of Nbs1 mediated the interaction of Nbs1 with Mdm2. Mdm2 co-localized with Nbs1 to sites of DNA damage following gamma-irradiation. Notably, Mdm2 overexpression inhibited DNA double strand break repair, and this was independent of p53 and ARF, the alternative reading frame of the Ink4alocus. The delay in DNA repair imposed by Mdm2 required the Nbs1 binding domain of Mdm2, but the ubiquitin ligase domain in Mdm2 was dispensable. Therefore, Nbs1 is a novel p53-independent Mdm2 binding protein and links Mdm2 to the Mre11-Nbs1-Rad50-regulated DNA repair response.  相似文献   

16.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.  相似文献   

17.
18.
Homeostatic mechanisms are essential for the protection and adaptation of organisms in a changing and challenging environment. Previously, we have described molecular mechanisms that lead to robust homeostasis/adaptation under inflow or outflow perturbations. Here we report that harmonic oscillations occur in models of such homeostatic controllers and that a close relationship exists between the control of the p53/Mdm2 system and that of a homeostatic inflow controller. This homeostatic control model of the p53 system provides an explanation why large fluctuations in the amplitude of p53/Mdm2 oscillations may arise as part of the homeostatic regulation of p53 by Mdm2 under DNA-damaging conditions. In the presence of DNA damage p53 is upregulated, but is subject to a tight control by Mdm2 and other factors to avoid a premature apoptotic response of the cell at low DNA damage levels. One of the regulatory steps is the Mdm2-mediated degradation of p53 by the proteasome. Oscillations in the p53/Mdm2 system are considered to be part of a mechanism by which a cell decides between cell cycle arrest/DNA repair and apoptosis. In the homeostatic inflow control model, harmonic oscillations in p53/Mdm2 levels arise when the binding strength of p53 to degradation complexes increases. Due to the harmonic character of the oscillations rapid fluctuating noise can lead, as experimentally observed, to large variations in the amplitude of the oscillation but not in their period, a behavior which has been difficult to simulate by deterministic limit-cycle models. In conclusion, the oscillatory response of homeostatic controllers may provide new insights into the origin and role of oscillations observed in homeostatically controlled molecular networks.  相似文献   

19.
20.
Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2–p53 interface or MdmX ((MDM4), mouse double minute 4)–p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2–MdmX really interesting new gene (RING)–RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2–MdmX RING–RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2–MdmX RING domain inhibitors)) that specifically inhibit Mdm2–MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2–MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2–MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development.Activation of tumor-suppressor p53 as a targeted non-genotoxic cancer therapy has been pursued for many years,1, 2 because p53 possesses potent tumor-suppressing activity in vivo.3, 4, 5 p53 can inhibit cancer cell growth by cell cycle arrest or terminate their proliferation by inducing apoptosis and senescence.6 The p53-based therapy is particularly attractive for cancer types including retinoblastoma, neuroblastoma and leukemia/lymphoma in which p53 is rarely mutated7 and p53-dependent apoptotic pathway is a predominant endpoint.8, 9, 10 Except for cancer-selected p53 mutations, the p53 activity is mainly inhibited by p53-binding proteins Mdm2 and MdmX ((MDM4), mouse double minute 4) in normal and cancer cells.11, 12 Prior focus of p53 reactivation strategy has been on targeting the Mdm2–p53 and/or MdmX–p53 interface. This has led to the discovery of a list of potent Mdm2–p53 inhibitors13 with several compounds of this class being advanced to phase I clinical trials in hematological neoplasia and solid tumors.2 However, the therapeutic effects of these Mdm2–p53 inhibitors can be attenuated by MdmX overexpression.14, 15, 16 Although peptide inhibitors with dual functions of inhibiting both Mdm2–p53 and MdmX–p53 interactions will overcome this problem and enhance p53-dependent cancer killing;17, 18 these inhibitors will not inhibit Mdm2 E3 ligase activity toward non-p53 targets such as retinoblastoma protein (RB), p21 and DAXX (death domain-associated protein),19, 20, 21 which to a different extent contributes to the p53-dependent biological effects.Recent genetic studies indicated that really interesting new gene (RING) domains of Mdm2 and MdmX are required for in vivo inhibition of p53 activity during development.22, 23, 24 MdmX was reported to stimulate Mdm2-mediated p53 multiple monoubiquitination using glutathione S-transferase (GST) fusion Hdm2 proteins.25, 26 Using non-GST Hdm2 proteins in in vitro biochemical assays, we found that MdmX–Mdm2 RING–RING interaction is essential for p53 polyubiquitination and proteasome-dependent degradation.26 These findings established that Mdm2–MdmX complex is the key regulator of p53 activity and Mdm2–MdmX RING–RING interaction is a critical but an unexplored interface for drug targeting.27 Identification of E3 ligase inhibitors for cancer therapy presents a huge opportunity but with great challenges.28 In this report, we describe successful identification and characterization of small molecule inhibitors for the E3 ligase activity of Mdm2–MdmX E3 complex. Among seven specific MMRis (Mdm2–MdmX RING domain inhibitors), MMRi64 was followed up in detail in this report. MMRi64 has several unique features that distinguish it from Mdm2–p53 inhibitor Nutlin3a. MMRi64 disrupts Mdm2–MdmX interaction in vitro and inhibits the E3 ligase activity of Mdm2–MdmX without affecting the E3 ligase activity of Mdm2 RING domain homodimers. MMRi64 induces p53 accumulation without induction of Mdm2 and p21 in lymphoma cells, which is distinct from the effects of Nutlin3a. Finally, MMRi64 induces PUMA (p53 upregulated modulator of apoptosis) but strongly downregulates MdmX and Mdm2, consequently activating the apoptotic arm of the p53 pathway in leukemia/lymphoma cells without the induction of growth arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号