首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Structure and hierarchical organization are crucial elements of biological systems and are likely required when engineering synthetic biomaterials with life-like behavior. In this context, additive manufacturing techniques like bioprinting have become increasingly popular. However, 3D bioprinting, as well as other additive manufacturing techniques, show limited resolution, making it difficult to yield structures on the sub-cellular level. To be able to form macroscopic synthetic biological objects with structuring on this level, manufacturing techniques have to be used in conjunction with biomolecular nanotechnology. Here, a short overview of both topics and a survey of recent advances to combine additive manufacturing with microfabrication techniques and bottom-up self-assembly involving DNA, are given.  相似文献   

2.
Duncan  Annie 《Hydrobiologia》1990,(1):541-548
Low algal biomasses and high water transparencies are a feature of the storage reservoirs that supply most of London's treated water. This is a result of knowledgeable limnological management and biomanipulation and despite the eutrophic nature of the River Thames with its high nutrients (7 gN m−3; 1 gP m−3) and particulate organic carbon (2 gC m−3). Built-in possibilities of jetting input water are managed to prevent stratification, to ensure isothermy, to mix chemicals and plankton vertically and horizontally and to manipulate the mixed-depth of the algal populations such that their potential for biomass growth is reduced by light-energy limitation. Spring algal growth is delayed and the spring peak is reduced and curtailed by the grazing impact of considerable biomasses of large-bodied daphnid populations (Daphnia magna, pulicaria & hyalina) whose development is also supported by the continuous input of high riverine algal crops. The existence of a large-bodied daphnid zooplankton in the reservoirs is associated with low levels of fish predation since the late 1960s. Variations in the intensity and nature of this vertebrate predation during the subsequent twenty years (1968–88) are illustrated by the changes that have occurred in the relationship between the phytoplankton and zooplankton biomasses of the April-May-June quarter of the year. This example of the London reservoirs serves to illustrate biomanipulation in deep water bodies by bottom-up as well as top-down effects.  相似文献   

3.
1. The relative importance of host-plant resources and natural enemies in influencing the abundance of insect herbivores was investigated in potted plant and natural population experiments, using tephritid (Diptera: Tephritidae) flies, their host plant, creeping thistle Cirsium arvense, and their Hymenoptera parasitoids. 2. Experimental manipulation of host-plant quality (i.e. levels of host-plant nutrients) and resource availability (i.e. the number of buds) increased tephritid abundance. There was no evidence that the seed-feeding tephritid fly Xyphosia miliaria preferentially oviposited on fertilized C. arvense. 3. At low thistle densities, X. miliaria showed a constant rate of resource exploitation. At higher thistle densities, a threshold was detected, above which additional buds were not attacked. 4. Parasitism attack was variable across host (tephritid) densities but levels of parasitism were consistently higher on the fertilized thistles. 5. Experimental manipulation of host-plant quality and resource availability (quantity) not only directly affects the tephritid population but also, indirectly, leads to high rates of parasitism. Both chemical and physical characteristics of host plants affect the performance of natural enemies. 6. Both top-down and bottom-up forces act to influence tephritid abundance, with bottom-up influences appearing to be the most important.  相似文献   

4.
The comparative-experimental approach uses identically designed, replicated experiments at different sites along environmental gradients in order to gain insight into the changing dynamics of communities with changing environmental conditions. Such studies reveal how ecological processes vary in intensity and interact to produce community structure. Early emphases were on the community consequences of shifting top-down impacts, competition and disturbance with environmental stress. Recent advances include the more precise quantification of gradients and thus a better understanding of species responses to the environment, and the revelation that bottom-up forces can vary significantly on within-region scales, with major consequences for the impact of top-down forces and thus community dynamics. Here the use of the method to examine the role of geographic location (coastal ecosystems in different hemispheres) and oceanographic conditions (upwelling vs downwelling) on these bottom-up/top-down linkages is advanced. We show that a bottom-up factor (prey recruitment) and a top-down effect (predation rate) vary consistently with oceanographic conditions within each coastal ecosystem, and also between geographic locations (New Zealand, Oregon). In general, both recruitment and predation rates are higher in Oregon. It is postulated that these differences are common responses to oceanographic variation, and that between-hemisphere differences result from the stronger and more persistent upwelling in the California Current ecosystem.  相似文献   

5.
Julian D. Olden 《Hydrobiologia》2000,436(1-3):131-143
Artificial neural networks are used to model phytoplankton succession and gain insight into the relative strengths of bottom-up and top-down forces shaping seasonal patterns in phytoplankton biomass and community composition. Model comparisons indicate that patterns in chlorophyll aconcentrations response instantaneously to patterns in nutrient concentrations (phosphorous (P), nitrite and nitrate (NO2/NO3–N) and ammonium (NH4–H) concentrations) and zooplankton biomass (daphnid cladocera and copepoda biomass); whereas lagged responses in an index of algal community composition are evident. A randomization approach to neural networks is employed to reveal individual and interacting contributions of nutrient concentrations and zooplankton biomass to predictions of phytoplankton biomass and community composition. The results show that patterns in chlorophyll aconcentrations are directly associated with P, NO2/NO3–N and daphnid cladocera biomass, as well as related to interactions between daphnid cladocera biomass, and NO2/NO3–N and P. Similarly, patterns in phytoplankton community composition are associated with NO2/NO3–N and daphnid cladocera biomass; however show contrasting patterns in nutrient– zooplankton and zooplankton–zooplankton interactions. Together, the results provide correlative evidence for the importance of nutrient limitation, zooplankton grazing and nutrient regeneration in shaping phytoplankton community dynamics. This study shows that artificial neural networks can provide a powerful tool for studying phytoplankton succession by aiding in the quantification and interpretation of the individual and interacting contributions of nutrient limitation and zooplankton herbivory on phytoplankton biomass and community composition under natural conditions.  相似文献   

6.
    
Global warming is predicted to change ecosystem functioning and structure in Arctic ecosystems by strengthening top‐down species interactions, i.e. predation pressure on small herbivores and interference between predators. Yet, previous research is biased towards the summer season. Due to greater abiotic constraints, Arctic ecosystem characteristics might be more pronounced in winter. Here we test the hypothesis that top‐down species interactions prevail over bottom‐up effects in Scandinavian mountain tundra (Northern Sweden) where effects of climate warming have been observed and top‐down interactions are expected to strengthen. But we test this ‘a priori’ hypothesis in winter and throughout the 3–4 yr rodent cycle, which imposes additional pulsed resource constraints. We used snowtracking data recorded in 12 winters (2004–2015) to analyse the spatial patterns of a tundra predator guild (arctic fox Vulpes lagopus, red fox Vulpes vulpes, wolverine Gulo gulo) and small prey (ptarmigan, Lagopus spp). The a priori top‐down hypothesis was then tested through structural equation modelling, for each phase of the rodent cycle. There was weak support for this hypothesis, with top‐down effects only discerned on arctic fox (weakly, by wolverine) and ptarmigan (by arctic fox) at intermediate and high rodent availability respectively. Overall, bottom‐up constraints appeared more influential on the winter community structure. Cold specialist predators (arctic fox and wolverine) showed variable landscape associations, while the boreal predator (red fox) appeared strongly dependent on productive habitats and ptarmigan abundance. Thus, we suggest that the unpredictability of food resources determines the winter ecology of the cold specialist predators, while the boreal predator relies on resource‐rich habitats. The constraints imposed by winters and temporary resource lows should therefore counteract productivity‐driven ecosystem change and have a stabilising effect on community structure. Hence, the interplay between summer and winter conditions should determine the rate of Arctic ecosystem change in the context of global warming.  相似文献   

7.
The importance of spatial pattern in ecosystems has long been recognized. However, incorporating patchiness into our understanding of forces regulating ecosystems has proved challenging. We used a combination of continuously sampling moored sensors, complemented by shipboard sampling, to measure the temporal variation, abundance and vertical distribution of four trophic levels in Hawaii's near shore pelagic ecosystem. Using an analysis approach from trophic dynamics, we found that the frequency and intensity of spatial aggregations-rather than total biomass-in each step of a food chain involving phytoplankton, copepods, mesopelagic micronekton and spinner dolphins (Stenella longirostris) were the most significant predictors of variation in adjacent trophic levels. Patches of organisms had impacts disproportionate to the biomass of organisms within them. Our results are in accordance with resource limitation-mediated by patch dynamics-regulating structure at each trophic step in this ecosystem, as well as the foraging behaviour of the top predator. Because of their high degree of heterogeneity, ecosystem-level effects of patchiness such as this may be common in many pelagic marine systems.  相似文献   

8.
We analysed species richness of plants and true bugs (Insecta, Heteroptera) along a pollution gradient in Scots pine stands in Central Germany. As a consequence of particulate deposition, pH-values of soils increased in the vicinity of the emission source. Therefore, emission increased productivity. Species richness of plants increased with decreasing distance from emission source, and thus with increasing productivity. Similarly, species richness of herbivorous Heteroptera increased with decreasing distance from emission source, whereas, surprisingly, abundance decreased. The proportion of specialised herbivorous bug species is largest in the vicinity of the emission source. Thus, the diversity pattern of herbivores may be explained by the specialisation hypothesis and not the consumer rarity hypothesis. Species richness and abundance of carnivorous Heteroptera showed no significant trend along the gradient. Overall our data favour the bottom-up control of species diversity in the analysed system.  相似文献   

9.
1. In a correlative study, we investigated the relative importance of fish predation, refuge availability and resource supply in determining the abundance and size distributions of the introduced and omnivorous signal crayfish (Pacifastacus leniusculus) in lakes and streams. Moreover, the biomass and food selection of predatory fish was estimated in each habitat type and stable isotopes of carbon and nitrogen were measured in perch (Perca fluviatilis), the dominant predator in the lakes, and in its potential food sources (crayfish, juvenile roach and isopods). 2. In lakes, crayfish were the most frequent prey in large perch (46%), followed by other macroinvertebrates (26%, including the isopod Asellus aquaticus) and small fish (25%). Crayfish and fish dominated the gut contents of large perch with respect to biomass. Nitrogen signatures showed that perch were one trophic level above crayfish (approx. 3.4‰) and a two‐source mixing model using nitrogen isotope values indicated that crayfish (81%) contributed significantly more to perch isotope values than did juvenile roach (19%). A positive correlation was found between the abundance of crayfish and the biomass of large perch. Crayfish abundance in lakes was also positively correlated with the proportion of cobbles in the littoral zone. Lake productivity (chlorophyll a) was positively correlated with crayfish size, but not with crayfish abundance. 3. In streams, brown trout (Salmo trutta) were the most abundant predatory fish. Gut contents of large trout in a forested stream showed that terrestrial insects were the most frequently found prey (60%), followed by small crayfish (27%) and isopods (27%). In contrast to lakes, the relative abundance of crayfish was negatively correlated with the total biomass of predatory fish and with total biomass of trout. However, abundance of crayfish at sites with a low biomass of predatory fish varied considerably and was related to substratum grain size, with fewer crayfish being caught when the substratum was sandy or dominated by large boulders. The mean size of crayfish was greater at stream sites with a high standing stock of periphyton, but neither predator biomass nor substratum grain size was correlated with crayfish size. 4. Our results suggest that bottom‐up processes influence crayfish size in lakes and streams independent of predator biomass and substratum availability. However, bottom‐up processes do not influence crayfish abundance. Instead, substratum availability (lakes) and interactions between predation and substratum grain size (streams) need to be considered in order to predict crayfish abundance.  相似文献   

10.
陆地生态系统碳平衡主要研究方法评述   总被引:7,自引:2,他引:7       下载免费PDF全文
陆地生态系统碳平衡是全球变化科学中的核心问题之一,目前也是生态科学中的前沿与热点问题,而陆地生态系统的复杂性与不确定性决定了对陆地生态系统碳平衡估测的复杂性和不确定性。为研究这一复杂性问题,已发展了许多研究方法。可分为“自下而上”与“自上而下”两种,各种方法都有其自身的优势和劣势。相关方向也已经有了大量的研究报道,但是,不同的研究由于在方法、时间与空间尺度等存在的差异,使得许多研究结果和预测很难被有效的整合或适用于大范围甚至全球水平。综述了陆地碳平衡的主要研究方法,分析和比较了各方法的特点,指出在研究中对不同方法的结果进行分析和比较,以及采用综合方法的必要性。  相似文献   

11.
The “Bottom-up” approach for implementing nano/microstructure using biological self-assembled systems has been investigated with tremendous interest by many researchers in the field of medical diagnostics, material synthesis, and nano/microelectronics. As a result, the techniques for achieving these systems have been extensively explored in recent years. The developed or developing techniques are based on many interdisciplinary areas such as biology, chemistry, physics, electrical engineering, mechanical engineering, and so on. In this paper, we review the fundamentals behind the self-assembly concepts and describe the state of art in the biological and chemical self-assembled systems for the implementation of nano/microstructures. These structures described in the paper can be applied to the implementation of hybrid biosensors, biochip, novel bio-mimetic materials, and nano/microelectronic devices.  相似文献   

12.
  总被引:1,自引:0,他引:1  
Generalizations describing how top‐down and bottom‐up processes jointly influence the production of offspring (recruitment) and the number of reproducing adults are lacking. This is a deficiency because (1) it is widely recognized that both top‐down and bottom‐up processes are common in ecosystems; and (2) the relationship between the number of individuals recruiting and number of reproductively active individuals present in that population is of fundamental importance in all branches of ecology. Here we derive a model to consider the joint effects of top‐down and bottom‐up forcing in any ecosystem. In general, during the lifetime of a cohort, bottom‐up effects are likely to limit recruitment over longer periods of time than top‐down effects. Top‐down effects are likely to be most important early in the life history when potential recruits are small in size, and such effects will be more recognizable in small cohorts comprised of slowly growing individuals.  相似文献   

13.
1. Fast-growing populations of phytophagous insects can be limited by the presence of natural enemies and by alkaloids that are produced by symbiotic associations of many temperate grass species with endophytic fungi. It is unclear if and how acquired plant defences derived from endophytic fungi interact with natural enemies to affect phytophagous insect populations. 2. To assess the relative importance of endophytic fungi compared to that of natural enemies on the population dynamics of phytophagous insects, we carried out a fully factorial field experiment, in which the presence of natural enemies and the presence of endophytic fungi were manipulated simultaneously. Target colonies of aphids were monitored for 8 weeks starting from their natural appearance in the field to the end of the aphid season. 3. We show that on Lolium perenne increased natural enemy densities reduced the individual numbers of two common cereal aphids, Rhopalosiphum padi and Metopolophium festucae. 4. The presence of the endophytic fungi Neotyphodium lolii reduced the number of M. festucae but did not affect the number of R. padi. The reduction in R. padi numbers by predators and parasitoids was not influenced by the presence of endophytes. For adult M. festucae, however, the negative effects of natural enemies were significant only in the absence of endophytes. 5. Over the duration of the experiment, the effect of natural enemies on aphid colony growth was much stronger than the effect of the endophytic fungi N. lolii, presumably because predator and parasitoid action on aphid colonies is much faster than any effects of endophytes. 6. Our results demonstrate that with simultaneous action of acquired endosymbionts and natural enemies, both factors can control aphid colony growth but they generally act independently of each other.  相似文献   

14.
Most prior work on the role of top-down and bottom-up effects in aquatic communities has ignored the significant detrital component that occurs in natural systems. We investigated the effects of specific nutrients (carbon, phosphorus, and nitrogen), as well as a top predator (the mosquito Wyeomyia smithii), on the structure of the detritivore community found in the water-filled leaves of the pitcher plant Sarracenia purpurea. The concentrations of three nutrients and the presence of the predators were manipulated in a factorial design, while the response of the remaining community was quantified. Bacterial growth was found to be strongly carbon-limited and somewhat less limited by phosphorus and there was an interaction between the effects of the two nutrients. Neither carbon or phosphorus addition affected protozoan or rotifer abundance, and nitrogen had only a minor effect. The presence of the predator, however, significantly reduced the abundance of the four numerically dominant bacteriovores. There were no interactions between top-down and bottom-up effects; the strong direct reciprocal effects between adjacent trophic levels seem to be greatly attenuated as they are propagated farther up or down the food chain.  相似文献   

15.
16.
The dialectic discourse of the 'gene' as the unit of heredity deduced from the phenotype, whether an intervening variable or a hypothetical construct, appeared to be settled with the presentation of the molecular model of DNA: the gene was reduced to a sequence of DNA that is transcribed into RNA that is translated into a polypeptide; the polypeptides may fold into proteins that are involved in cellular metabolism and structure, and hence function. This path turned out to be more bewildering the more the regulation of products and functions were uncovered in the contexts of integrated cellular systems. Philosophers struggling to define a unified concept of the gene as the basic entity of (molecular) genetics confronted those who suggested several different 'genes' according to the conceptual frameworks of the experimentalists. Researchers increasingly regarded genes de facto as generic terms for describing their empiric data, and with improved DNA-sequencing capacities these entities were as a rule bottom-up nucleotide sequences that determine functions. Only recently did empiricists return to discuss conceptual considerations, including top-down definitions of units of function that through cellular mechanisms select the DNA sequences which comprise 'genomic-footprints' of functional entities.  相似文献   

17.
  总被引:3,自引:0,他引:3  
Thompson  R.C.  Roberts  M.F.  Norton  T.A.  Hawkins  S.J. 《Hydrobiologia》2000,440(1-3):357-367
Distinct seasonal variations in the abundance of photosynthetic microbiota and limpet grazing intensity were recorded at Port St Mary, Isle of Man between January 1994 and June 1996. Microbial abundance was negatively correlated with insolation stress, while grazing intensity was positively correlated with sea and air temperature. These patterns result in a mis-match between the supply of and the demand for microbial resources with maximal grazing intensity during the summer and autumn, but maximal microbial standing stock during the winter and early spring. The importance of top-down control of microbial assemblages by grazing was demonstrated by experimental exclusion of limpets during autumn 1993. This resulted in a four-fold increase in the abundance of cyanobacteria within 6 days, followed by a more gradual proliferation of ephemeral algae during the next 4 weeks. The abundance of diatoms remained relatively constant and was not influenced by the removal of grazers at this time of year. The influence of microbial resource availability on the growth and mortality of limpets was examined using experimental enclosures of differing densities of either Patella vulgata or P. depressa. After 6 months, there were significant relationships between grazer density and both mortality and growth with increased mortality and reduced growth for P. vulgata at increased densities, and reduced growth for P. depressa at increased densities. Hence, the availability of microbial resources may also influence the biomass of grazers on rocky shores from the bottom upwards. A conceptual model is presented which describes seasonal and annual variations in microbial resources and grazing intensity and their potential consequences for other shore dwellers.  相似文献   

18.
19.
Herbivorous top-down forces and bottom-up competition for nutrients determine the coexistence and relative biomass patterns of producer species. Combining models of predator-prey and producer-nutrient interactions with a structural model of complex food webs, I investigated these two aspects in a dynamic food-web model. While competitive exclusion leads to persistence of only one producer species in 99.7% of the simulated simple producer communities without consumers, embedding the same producer communities in complex food webs generally yields producer coexistence. In simple producer communities, the producers with the most efficient nutrient-intake rates increase in biomass until they competitively exclude inferior producers. In food webs, herbivory predominantly reduces the biomass density of those producers that dominated in producer communities, which yields a more even biomass distribution. In contrast to prior analyses of simple modules, this facilitation of producer coexistence by herbivory does not require a trade-off between the nutrient-intake efficiency and the resistance to herbivory. The local network structure of food webs (top-down effects of the number of herbivores and the herbivores' maximum consumption rates) and the nutrient supply (bottom-up effect) interactively determine the relative biomass densities of the producer species. A strong negative feedback loop emerges in food webs: factors that increase producer biomasses also increase herbivory, which reduces producer biomasses. This negative feedback loop regulates the coexistence and biomass patterns of the producers by balancing biomass increases of producers and biomass fluxes to herbivores, which prevents competitive exclusion.  相似文献   

20.
  总被引:1,自引:0,他引:1  
Abstract. 1. Much has been learned in recent years regarding the influence of environmental conditions on top‐down and bottom‐up effects acting on insect herbivores. Temporal variation in environmental conditions, however, has gone largely unstudied in spite of undoubtedly strong influences in most systems. 2. A 2‐year study was conducted to examine the legacy effects of previous manipulations of host plant quality and parasitism pressure on the top‐down and bottom‐up effects influencing population densities of the salt marsh planthopper Pissonotus quadripustulatus. 3. For 10 months in 1998, a 2 × 2 factorial experiment was carried out, in which host plant quality was increased by the addition of nitrogen fertiliser, and parasitism pressure was decreased through the use of yellow sticky traps. This was followed by 2 months in the winter with no treatment applications. Treatments were then reversed in 1999 for a further 10 months. 4. In 1998, fertilisation treatments increased plant quality significantly, which resulted in strong effects on P. quadripustulatus density. Parasitism reduction treatments had weaker and time‐dependent effects on the herbivore, increasing planthopper density in late summer and autumn. 5. After 2 months without treatments, previous fertilisation treatments were still influencing all response variables measured significantly. The legacy effects of fertilisation persisted for at least 7 months for the host plant, and at least 5 months for the herbivore and parasitoid. 6. Fertilisation treatments in 1999 increased P. quadripustulatus density by approximately the same percentage as in 1998, suggesting that previous reductions in parasitism had no influence on herbivore responses to increased nutrients. Parasitism reduction treatments in 1999, however, resulted in greater increases in herbivore density than in 1998, suggesting that previous increases in nutrients enabled greater responses to reductions in top‐down pressure. 7. The results show that the top‐down effects of parasitism attenuated more quickly than did the bottom‐up effects of increased plant quality through greater nutrient availability. They also suggest that the recent history of nutrient status in an ecosystem may be important in determining the relative strengths of top‐down and bottom‐up forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号