首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Journal of Asia》2000,3(2):113-119
Effect of Sitophilus zeamais Mostschulsky infestation on the heat changes of maize at 13, 16, and 19% moisture content with 0, 5, and 10% broken corn and foreign material was studied in 1.81 thermos containers. Containers with infested and uninfested maize were held in a chamber at 26.6°C and 60±5% r.h. for 80 d. Temperatures were measured continuously using a datalogger system. At 13 and 16% moisture content, more grain heating was recorded in infested than in uninfested maize. Presence of insects and moisture content level were major factors in grain heating during storage. Level of BCFM did not significantly affect the grain heating. At 19% moisture content, grain heating increased in all treatments. Heating appeared to be more related to microbial growth than to insect activity, and accumulated to 26.5–37 kj/kg maize at 3–4 wk. The growth of the maize weevil population was significantly affected by grain moisture content. The greatest number of offspring after 80 d was recorded in the 13% moisture content trial. At 19% moisture content, there were more dead than live insects.  相似文献   

2.
The increasing level CO2 may altered host plant physiology and hence affect the foraging behavior of herbivore insects and predator. Hence, the aim of this study was provides evidence that host plants grown at different levels of CO2 can alter the choice behavior of aphid, Sipha flava and their natural enemies, Cycloneda sanguinea and Diomus seminulus. The plant used was Pennisetum purpureum, cultivar Cameron Piracicaba growing in greenhouse (mean value of CO2?=?440 ppm), climatic chamber with constant value of CO2?=?500 ppm and climatic chamber with fluctuating CO2 (mean value?=?368 ppm). A glass Y-shape olfactometer was used to verify the insects responses towards elephant grass plants cultivated under different conditions. The aphids were statistically more attracted by plants grown with constant CO2 level (500 ppm) than by plants grown with fluctuating CO2 level or plants grown in greenhouse. There was no difference in S. flava preference to non-infested versus infested plants by conspecifics. The predator C. sanguinea did not show difference between plants grown with constant CO2 level and infested or not with S. flava. However, the predator D. seminulus showed higher preference to plants grown with constant CO2 level and infested with S. flava. This study showed that the response of S. flava and its predators were affected by plants grown under different levels of CO2.  相似文献   

3.
Entomopathogenic nematodes (EPN) frequently kill their host within 1-2 days, and interest in EPN focuses mainly on their lethality. However, insects may take longer to die, or may fail to die despite being infected, but little is known about the effects of EPN infection on insects, other than death. Here we investigate both lethal and sub-lethal effects of infection by two EPN species, Steinernema carpocapsae and Heterorhabditis downesi, on adults of the large pine weevil, Hylobius abietis. Following 12 h nematode-weevil contact in peat, S. carpocapsae killed a significantly higher proportion of weevils (87-93%) than H. downesi (43-57%) at all concentrations tested. Less than 10% of weevils were dead within 2 days, and weevils continued to die for up to 10 days after exposure (LT50 of 3 days or more). In a separate experiment, live weevils dissected 6 days after a 24 h exposure to nematodes on filter paper harbored encapsulated and dead nematodes, showing that weevils could defend themselves against infection. Some live weevils also harbored live nematodes 6 days after they had been removed from the nematode infested medium. Feeding by weevils was not affected by infection with, or exposure to, either species of EPN. We discuss these results in relation to the use of EPN in biological control against H. abietis.  相似文献   

4.

Background

Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered.

Methodology/Principal Findings

An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock.

Conclusions/Significance

This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.  相似文献   

5.
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO2), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root‐feeding insects to eCO2 are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO2 conditions are largely unexplored for root herbivore interactions. This study investigated how eCO2 (700 μmol mol?1) affected a root‐feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root‐feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO2. Root biomass decreased by 16% in eCO2, which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO2 on root C and N concentrations. Weevils caused a sink in plants, resulting in 8–12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO2 and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO2, suggestive of defensive response, but caused a decrease under eCO2. Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root‐growth underpinned the negative effects of eCO2 on vine weevils and speculate that the plant's failure to mount a defensive response at eCO2 may have intensified these negative effects.  相似文献   

6.
Carbon Dioxide Production by Dry Grain of Zea mays   总被引:1,自引:1,他引:0       下载免费PDF全文
Use of the gas chromatograph and a mercury-to-glass sealed respirometer adapted for gas syringe sampling, allowed the rapid, accurate characterization of CO2 evolution rates from live and from dead-sterile Zea mays L. grain dried to moisture levels of 12.6 to 1.4%. The live grain at the lowest moisture level showed an elevated rate inconsistent with the exponential increase in rate of CO2 evolution with increasing moisture found for maize with moisture contents from 4 to 12.6%. At the lowest moisture level, rates of CO2 evolution from dead-sterile grain were greater than for live grain. Moisture had no effect on CO2 evolution from dead-sterile grain. Increasing temperature and increasing levels of O2 in the storage atmosphere resulted in increased rates of CO2 evolution from both live and dead-sterile maize. CO2 production rates from live and from dead-sterile grain decreased with increasing storage time, even though respirometer CO2 concentrations were less than 1% at the end of the experiment. Our results indicate that CO2 production is not a dependable measure of respiration in dry seeds. Other experiments indicate that oxygen absorption also is not reliable in maize grain.  相似文献   

7.
Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus) modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2). Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.  相似文献   

8.
An agronomic assessment of greenhouse gas emissions from major cereal crops   总被引:8,自引:0,他引:8  
Agricultural greenhouse gas (GHG) emissions contribute approximately 12% to total global anthropogenic GHG emissions. Cereals (rice, wheat, and maize) are the largest source of human calories, and it is estimated that world cereal production must increase by 1.3% annually to 2025 to meet growing demand. Sustainable intensification of cereal production systems will require maintaining high yields while reducing environmental costs. We conducted a meta‐analysis (57 published studies consisting of 62 study sites and 328 observations) to test the hypothesis that the global warming potential (GWP) of CH4 and N2O emissions from rice, wheat, and maize, when expressed per ton of grain (yield‐scaled GWP), is similar, and that the lowest value for each cereal is achieved at near optimal yields. Results show that the GWP of CH4 and N2O emissions from rice (3757 kg CO2 eq ha?1 season?1) was higher than wheat (662 kg CO2 eq ha?1 season?1) and maize (1399 kg CO2 eq ha?1 season?1). The yield‐scaled GWP of rice was about four times higher (657 kg CO2 eq Mg?1) than wheat (166 kg CO2 eq Mg?1) and maize (185 kg CO2 eq Mg?1). Across cereals, the lowest yield‐scaled GWP values were achieved at 92% of maximal yield and were about twice as high for rice (279 kg CO2 eq Mg?1) than wheat (102 kg CO2 eq Mg?1) or maize (140 kg CO2 eq Mg?1), suggesting greater mitigation opportunities for rice systems. In rice, wheat and maize, 0.68%, 1.21%, and 1.06% of N applied was emitted as N2O, respectively. In rice systems, there was no correlation between CH4 emissions and N rate. In addition, when evaluating issues related to food security and environmental sustainability, other factors including cultural significance, the provisioning of ecosystem services, and human health and well‐being must also be considered.  相似文献   

9.
The quantum requirement (QR) for photosynthesis in Sedum praealtum, a Crassulacean acid metabolism plant, was compared with that of wheat, a C3 plant, and maize, a C4 plant, at 30 C. During the deacidification phase in S. praealtum, approximately 16 moles quanta were absorbed per mole malate consumed. This is equivalent to 16 moles quanta per mole CO2 fixed, assuming 1 mole CO2 is assimilated per mole malate decarboxylated. This QR for Crassulacean acid metabolism is similar to that of the C3 or C4 plant under atmospheric conditions, even though there are considerable differences in the biochemistry of photosynthesis. During late-afternoon C3-like fixation of atmospheric CO2 in S. praealtum, the QR was relatively high with values of 41 under 21% O2 and 19 under 2% O2. During the deacidification phase in S. praealtum, the relatively low QR can be accounted for by the repression of photorespiration and saturation of photosynthesis from the elevated CO2 concentration in the leaves during malate decarboxylation.  相似文献   

10.
Maeto K  Ozaki K 《Oecologia》2003,137(3):392-398
Quercus crispula (=Q. mongolica var. grosseserrata) is the predominant tree species in cool temperate, mixed broadleaf/conifer forests in northern Japan. We compared 11 years of data on acorn production in a population of Q. crispula, with data on seed-insect populations, to try to answer the following questions: (1) Does Q. crispula show a regular pattern of masting? (2) How long do principal seed predators remain in diapause? (3) How do the seed predators affect the pattern of predator satiation? Q. crispula showed a tendency to alternate bearing, with significant synchrony between individual trees. The principal acorn-feeding insects (Curculio spp. weevils), which infested 25%–70% of matured acorns, generally exhibited a prolonged diapause of 2 years. No significant negative relationship was found between the rate of injury by the weevils and the density of mature acorns, indicating that simple predator satiation fails due to the synchrony of the life-cycle of acorn-feeding insects and the periodical production of acorns. However, the rate of injury by the weevils was negatively correlated with the relative abundance of mature acorns to the number of weevil larvae that had matured 2 years previously. Thus, the proportion of sound acorns notably increased in a rich crop after a disturbance in alternate bearing. Prolonged diapause of specific seed predators is critical in determining the peak year of sound-seed production.  相似文献   

11.
BackgroundMaize is considered one of the crops more susceptible to mycotoxins in the world. Two of the mycotoxins commonly associated with maize are fumonisins and ochratoxin A. Aspergillus niger is a known producer of ochratoxin A and is easily found in maize. Recently, however, A. niger has been reported to produce as well fumonisins, mainly fumonisin B2.AimsThe aim of this study was to isolate A. niger strains from maize samples collected in three Portuguese maize growing regions and to detect the production of both fumonisin B2 and ochratoxin A.MethodsNinety five maize samples were collected, plated, and all observable Aspergillus section Nigri strains were isolated. Strains were morphologically characterized and mycotoxin production was determined by HPLC-FD.ResultsIsolations resulted in a total of 270 strains of black Aspergillus from 73 samples (77% of the samples). About 14% of those strains were found to produce ochratoxin A and 39% of the strains were found to produce fumonisin B2.ConclusionsAn association between the production of these two mycotoxins could not be found and no conclusions could be taken whether the presence of A. niger aggregate strains will increase the risk of maize contamination with fumonisins and more specifically with fumonisin B2.  相似文献   

12.
春玉米-晚稻与早稻-晚稻种植模式碳足迹比较   总被引:2,自引:0,他引:2  
量化作物生产的碳足迹有助于为农业生态系统温室气体减排提供理论依据。利用生命周期法研究了我国南方地区稻田春玉米-晚稻水旱轮作种植模式和早稻-晚稻连作种植模式下粮食生产的碳足迹,并定量分析粮食生产过程中各种碳排放源的相对贡献。结果表明,与早稻-晚稻的连作模式相比,春玉米-晚稻轮作模式的单位面积碳排放降低了6724 kg CO2-eq/hm2,单位产量的碳足迹降低了0.56 kg CO2-eq/kg。春玉米比早稻少排放6228 kg CO2-eq/hm2;与早稻-晚稻模式中晚稻碳排放相比,春玉米-晚稻轮作模式晚稻碳排放降低了497 kg CO2-eq/hm2。早稻-晚稻种植模式的碳足迹主要来源于甲烷(CH4),其碳排放为9776 kg CO2-eq/hm2(54.8%),氮肥生产和施用的碳排放为2871 kg CO2-eq/hm2(16.1%),灌溉电力消耗的碳排放2849 kg CO2-eq/hm2(16.0%)。春玉米-晚稻轮作模式的碳足迹主要来源于CH4的碳排放4442 kg CO2-eq/hm2(39.9%),氮肥生产和施用的碳排放2871 kg CO2-eq/hm2(25.8%),灌溉电力消耗的碳排放1508 kg CO2-eq/hm2(13.6%)。该模式中晚稻的碳足迹组成情况与春玉米-晚稻模式的碳足迹相似。但是,对于春玉米而言,其碳足迹主要来源氮肥生产和施用的碳排放1436 CO2-eq/hm2(50.1%),氧化亚氮(N2O)的碳排放为579 kg CO2-eq/hm2(20.2%),CH4的碳排放为378 CO2-eq/hm2(13.2%)。同时,相比于早稻-晚稻中晚稻的产量(6333 kg/hm2),春玉米-晚稻轮作模式下的晚稻产量(7270 kg/hm2)提高了14.8%。因此,引入春玉米-晚稻轮作模式有利于提升稻田生产力,降低稻田连作系统碳排放和碳足迹。  相似文献   

13.
The objective of this study was to evaluate the nutritional and ecological aspects of feeding systems practiced under semi-arid environments in Jordan. Nine dairy farms representing the different dairy farming systems were selected for this study. Feed samples (n = 58), fecal samples (n = 108), and milk samples (n = 78) were collected from the farms and analysed for chemical composition. Feed samples were also analysed for metabolisable energy (ME) contents and in vitro organic matter digestibility according to Hohenheim-Feed-Test. Furthermore, fecal nitrogen concentration was determined to estimate in vivo organic matter digestibility. ME and nutrient intakes were calculated based on the farmer’s estimate of dry matter intake and the analysed composition of the feed ingredients. ME and nutrient intakes were compared to recommended standard values for adequate supply of ME, utilizable crude protein, rumen undegradable crude protein (RUCP), phosphorus (P), and calcium (Ca). Technology Impact Policy Impact Calculation model complemented with a partial life cycle assessment model was used to estimate greenhouse gas emissions of milk production at farm gate. The model predicts CH4, N2O and CO2 gases emitted either directly or indirectly. Average daily energy corrected milk yield (ECM) was 19 kg and ranged between 11 and 27 kg. The mean of ME intake of all farms was 184 MJ/d with a range between 115 and 225 MJ/d. Intake of RUCP was lower than the standard requirements in six farms ranging between 19 and 137 g/d, was higher (32 and 93 g/d) in two farms, and matched the requirements in one farm. P intake was higher than the requirements in all farms (mean oversupply = 19 g/d) and ranged between 3 and 30 g/d. Ca intake was significantly below the requirements in small scale farms. Milk nitrogen efficiency N-eff (milk N/intake N) varied between 19% and 28% and was mainly driven by the level of milk yield. Total CO2 equivalent (CO2 equ) emission ranged between 0.90 and 1.88 kg CO2/kg ECM milk, where the enteric and manure CH4 contributed to 52% of the total CO2 equ emissions, followed by the indirect emissions of N2O and the direct emissions of CO2 gases which comprises 17% and 15%, respectively, from total CO2 equ emissions. Emissions per kg of milk were significantly driven by the level of milk production (r2 = 0.93) and of eDMI (r2 = 0.88), while the total emissions were not influenced by diet composition. A difference of 16 kg ECM/d in milk yield, 9% in N-eff and of 0.9 kg CO2 equ/kg in ECM milk observed between low and high yielding animals. To improve the nutritional status of the animals, protein requirements have to be met. Furthermore, low price by-products with a low carbon credit should be included in the diets to replace the high proportion of imported concentrate feeds and consequently improve the economic situation of dairy farms and mitigate CO2 equ emissions.  相似文献   

14.
Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.  相似文献   

15.
The accumulation of malate by maize (Zea mays L.) root tips perfused with KH13CO3 was followed by 13C nuclear magnetic resonance spectroscopy. In vivo nuclear magnetic resonance spectra contained distinct signals from two pools of malate in maize root tips, one at a pH ~5.3 (assigned to the vacuole) and one at a pH > 6.5 (assigned to the cytoplasm). The ratio of cytoplasmic to vacuolar malate was lower in 12 millimeter long root tips than in 2 millimeter root tips. The relatively broad width of the signals from C1- and C4-labeled vacuolar malate indicated heterogeneity in vacuolar pH. During the 3 hour KH13CO3 treatment, 13C-malate accumulated first primarily in the cytoplasm, increasing to a fairly constant level of ~6 millimolar by 1 hour. After a lag, vacuolar malate increased throughout the experiment.  相似文献   

16.
Energy expenditure (EE) can be estimated based on respiratory gas exchange measurements, traditionally done in respiration chambers by indirect calorimetry (IC). However, the 13C-bicarbonate technique (13C-BT) might be an alternative minimal invasive method for estimation of CO2 production and EE in the field. In this study, four Shetland ponies were used to explore the effect of feeding on CO2 production and EE measured simultaneously by IC and 13C-BT. The ponies were individually housed in respiration chambers and received either a single oral or intravenous (IV) bolus dose of 13C-labelled sodium bicarbonate (NaH13CO3). The ponies were fed haylage 3 h before (T−3), simultaneously with (T0) or 3 h after (T+3) administration of 13C-bicarbonate. The CO2 produced and O2 consumed by the ponies were measured for 6 h with both administration routes of 13C-bicarbonate at the three different feeding times. Feeding time affected the CO2 production (P<0.001) and O2 consumption (P<0.001), but not the respiratory quotient (RQ) measured by IC. The recovery factor (RF) of 13C in breath CO2 was affected by feeding time (P<0.01) and three different RF were used in the calculation of CO2 production measured by 13C-BT. An average RQ was used for the calculations of EE. There was no difference between IC and 13C-BT for estimation of CO2 production. An effect of feeding time (P<0.001) on the estimated EE was found, with higher EE when feed was offered (T0 and T+3) compared with when no feed was available (T−3) during measurements. In conclusion, this study showed that feeding time affects the RF and measurements of CO2 production and EE. This should be considered when the 13C-BT is used in the field. IV administration of 13C-bicarbonate is recommended in future studies with horses to avoid complex 13C enrichment-time curves with maxima and shoulders as observed in several experiments with oral administration of 13C-bicarbonate.  相似文献   

17.

Aims

Pulse labeling of crops using 13C is often employed to trace photosynthesized carbon (C) within crop-soil systems. However, few studies have compared the C distribution for different labeling periods. The overall aim of this study was to determine the length of the monitoring interval required after 13C-pulse labeling to quantify photosynthate C allocation into plant, soil and rhizosphere respiration pools for the entire growing season of maize (Zea mays L.).

Methods

Pot grown maize was pulse-labeled with 13CO2 (98 at.?%) at the beginning of emergence, elongation, heading and grainfilling growth stages. The routing of 13C into shoot and root biomass, soil CO2 flux and soil organic carbon (SOC) pools was monitored for 27 days after 13C-pulse labeling at the beginning of each growth stage.

Results

The majority of the 13C was recovered after 27 d in the maize shoots, i.e., 57 %, 53 %, 70 % and 80 %, at the emergence, elongation, heading, and grainfilling stages, respectively. More 13C was recovered in the root biomass at elongation (27 %) compared to the least at the grainfilling stage (3 %). The amount recovered in the soil was the smallest pool of 13C at emergence (2.3 %), elongation (3.8 %), heading and grainfilling (less than 2 %). The amount of 13C recovered in rhizosphere respiration, i.e. 13CO2, was greatest at emergence (26 %), and similar at the elongation, heading and grainfilling stages (~16 %).

Conclusions

At least 24 days is required to effectively monitor the recovery of 13C after pulse labeling with 13CO2 for maize in plant and soil pools. The recovery of 13C differed between growth stages and corresponded to the changing metabolic requirements of the plant, which indicated labeling for the entire growth season would more accurately quantify the C budget in plant-soil system.  相似文献   

18.
Densities of 10, 20, and 30 hard red winter wheat kernels, Triticum aestivum L., were infested with different life stages of the rice weevil, Sitophilus oryzae (L.), mixed with 35 g of wheat treated with 300 ppm of the Protect-It (Mississauga, Ontario, Canada) formulation of diatomaceous earth (DE), and held at 22, 27, and 32 degrees C. A similar test was conducted by exposing densities of 6, 12, and 18 corn kernels infested with different life stages of the maize weevil, Sitophilus zeamais Motschulsky, mixed with 30 g of corn, Zea mays L., treated with 300 ppm of DE. Mortality of adults emerging from kernels in wheat treated with DE was always greater than controls, and ranged from 56 to 90% at 22 degrees C and was >90% at 27 and 32 degrees C. In most treatment combinations, exposure to DE suppressed F1 progeny by 60-90% relative to untreated controls. Mortality of adult maize weevils on treated corn held at 22 and 27 degrees C was lower than mortality of rice weevils on wheat, and ranged from 4 to 84%. F1 production was low in corn held at 22 degrees C, and no F1s were produced in either the controls or the treatments at 32 degrees C. In treated corn held at 27 degrees C, exposure to the DE suppressed F1 progeny by approximately 70-80% relative to the untreated controls. Results of this study show that rice weevils and maize weevils emerging from infested kernels as adults are susceptible to DE, and these results are comparable to other studies in which adult weevils were exposed directly on wheat or corn treated with DE. Although adult weevils will be killed by exposure to DE, some oviposition could still occur and progeny suppression may not be complete; however, application of DE to commodities already infested with internal feeders, such as the rice weevil and the maize weevil, could help eliminate or suppress the infestation.  相似文献   

19.
不同施氮措施对旱作玉米地土壤酶活性及CO2排放量的影响   总被引:5,自引:0,他引:5  
对施用速效氮肥(尿素)和缓释氮肥的旱作夏玉米地土壤酶活性及CO2排放量进行分析。结果表明,与不施肥处理比较,不同氮肥种类和施用量均可显著提高土壤脲酶、蔗糖酶、过氧化氢酶活性和CO2的排放量。在整个生育期,尿素与缓释氮肥处理土壤酶活性和土壤CO2排放量表现出相同变化趋势,尿素和缓释氮肥处理土壤CO2平均排放量分别为459.12 mg·m-·2h-1和427.11 mg·m-·2h-1,两者达到显著差异水平(P<0.5)。相关分析表明,土壤脲酶、蔗糖酶和过氧化氢酶活性与土壤CO2排放量呈显著或极显著正相关,相关系数分别为0.79、0.64和0.80。说明相同施氮量缓释氮肥较尿素能有效提高土壤酶活性并降低土壤碳排放量。  相似文献   

20.
A method was devised to quantify short-term photorespiratory rates in terrestrial plants using 18O-intermediates of the glycolate pathway, specifically glycolate, glycine, and serine. The pathway intermediates were isolated and analyzed on a GC/MS to determine molecular percent 18O-enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, derived rate equations, and nonlinear regression techniques. Glycolate synthesis in wheat (Triticum aestivum L.), a C3 plant, and maize (Zea mays L.), a C4 plant, was stimulated by high O2 concentrations and inhibited by high CO2 concentrations. The synthesis rates were 7.3, 2.1, and 0.7 micromoles per square decimeter per minute under a 21% O2 and 0.035% CO2 atmosphere for leaf tissue of wheat, maize seedlings, and 3-month-old maize, respectively. Photorespiratory CO2 evolution rates were estimated to be 27, 6, and 2%, respectively, of net photosynthesis for the three groups of plants under the above atmosphere. The results from maize tissue support the hypothesis that C4 plants photorespire, albeit at a reduced rate in comparison to C3 plants, and that the CO2/O2 ratio in the bundle sheath of maize is higher in mature tissue than in seedling tissue. The pool size of the three photorespiratory intermediates remained constant and were unaffected by changes in either CO2 or O2 concentrations throughout the 10-minute labeling period. This suggests that photorespiratory metabolism is regulated by other mechanism besides phosphoglycolate synthesis by ribulose-1,5-bisphosphate carboxylase/oxygenase, at least under short-term conditions. Other mechanisms could be alternate modes of synthesis of the intermediates, regulation of some of the enzymes of the photorespiratory pathway, or regulation of carbon flow between organelles involved in photorespiration. The glycolate pool became nearly 100% 18O-labeled under an atmosphere of 40% O2. This pool failed to become 100% 18O-enriched under lower O2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号