首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgen receptor splice variant 7 (AR-V7), a form of ligand-independent and constitutively activating variant of androgen receptor (AR), is considered as the key driver to initiate castration-resistant prostate cancer (CRPC). Because AR-V7 lacks ligand-binding domain, the AR-targeted therapies that aim to inactivate AR signaling through disrupting the interaction between AR and androgen are limited in CRPC. Thus, the emergence of AR-V7 has become the greatest challenge for treating CRPC. Targeting protein degradation is a recently proposed novel avenue for cancer treatment. Our previous studies have been shown that the oncoprotein AR-V7 is a substrate of the proteasome. Identifying novel drugs that can trigger the degradation of AR-V7 is therefore critical to cure CRPC. Here we show that nobiletin, a polymethoxylated flavonoid derived from the peel of Citrus fruits, exerts a potent anticancer activity via inducing G0/G1 phase arrest and enhancing the sensitivity of cells to enzalutamide in AR-V7 positive PC cells. Mechanically, we unravel that nobiletin selectively induces proteasomal degradation of AR-V7 (but not AR). This effect relies on its selective inhibition of the interactions between AR-V7 and two deubiquitinases USP14 and USP22. These findings not only enrich our understanding on the mechanism of AR-V7 degradation, but also provide an efficient and druggable target for overcoming CRPC through interfering the stability of AR-V7 mediated by the interaction between AR-V7 and deubiquitinase.Subject terms: Drug development, Translational research  相似文献   

2.
3.
4.
《Translational oncology》2021,14(11):101213
Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy (ADT) remains challenging. Many studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of CRPC, including resistance to the new generation of inhibitors of androgen receptor (AR) action. ARVs are constitutively active and lack the ligand-binding domain (LBD), thereby allowing prostate cancer (PC) to maintain AR activity despite therapies that target the AR (full-length AR; AR-FL). Previously, we have reported that long-term ADT increases the neuroendocrine (NE) hormone – Gastrin Releasing Peptide (GRP) and its receptor (GRP-R) expression in PC cells. Further, we demonstrated that activation of GRP/GRP-R signaling increases ARVs expression by activating NF-κB signaling, thereby promoting cancer progression to CRPC. Most importantly, as a cell surface protein, GRP-R is easily targeted by drugs to block GRP/GRP-R signaling. In this study, we tested if blocking GRP/GRP-R signaling by targeting GRP-R using GRP-R antagonist is sufficient to control CRPC progression. Our studies show that blocking GRP/GRP-R signaling by targeting GRP-R using RC-3095, a selective GRP-R antagonist, efficiently inhibits NF-κB activity and ARVs (AR-V7) expression in CRPC and therapy-induced NEPC (tNEPC) cells. In addition, blocking of GRP/GRP-R signaling by targeting GRP-R can sensitize CRPC cells to anti-androgen treatment (such as MDV3100). Further, preclinical animal studies indicate combination of GRP-R antagonist (targeting ARVs) with anti-androgen (targeting AR-FL) is sufficient to inhibit CRPC and tNEPC tumor growth.  相似文献   

5.
6.
Androgen receptor (AR) and its variants play vital roles in development and progression of prostate cancer. To clarify the mechanisms involved in the enhancement of their actions would be crucial for understanding the process in prostate cancer and castration-resistant prostate cancer transformation. Here, we provided the evidence to show that pre-mRNA processing factor 6 (PRPF6) acts as a key regulator for action of both AR full length (AR-FL) and AR variant 7 (AR-V7), thereby participating in the enhancement of AR-FL and AR-V7-induced transactivation in prostate cancer. In addition, PRPF6 is recruited to cis-regulatory elements in AR target genes and associates with JMJD1A to enhance AR-induced transactivation. PRPF6 also promotes expression of AR-FL and AR-V7. Moreover, PRPF6 depletion reduces tumor growth in prostate cancer-derived cell lines and results in significant suppression of xenograft tumors even under castration condition in mouse model. Furthermore, PRPF6 is obviously highly expressed in human prostate cancer samples. Collectively, our results suggest PRPF6 is involved in enhancement of oncogenic AR signaling, which support a previously unknown role of PRPF6 during progression of prostate cancer and castration-resistant prostate cancers.  相似文献   

7.
Androgens and androgen receptors are vital factors involved in prostate cancer progression, and androgen ablation therapies are commonly used to treat advanced prostate cancer. However, the acquisition of androgen ablation therapy resistance remains a challenge. Recently, androgen receptor splicing variants lacking the ligand-binding domain have been reported to play a critical role in the acquisition of androgen ablation therapy resistance. In the present study, we revealed that the messenger RNA expression and the protein levels of an androgen receptor variant 7 (AR-V7) were higher in prostate cancer tissue samples and in the AR-positive prostate cancer cell line, VCaP. In contrast, microRNA (miR)-30c-1-3p/miR-103a-2-5p expression was significantly downregulated in tumor tissues and cells. miR-30c-1-3p/miR-103a-2-5p overexpression could inhibit AR-V7 expression, suppress VCaP cell growth, and inhibit AR-V7 downstream factor expression by directly targeting the 3′-untranslated region of AR-V7. Under enzalutamide (Enza) treatment, the effects of AR-V7 overexpression were the opposite of those of miR-103a-2-5p/miR-30c-1-3p overexpression; more importantly, the effects of miR-103a-2-5p/miR-30c-1-3p overexpression could be significantly reversed by AR-V7 overexpression under Enza. In summary, we demonstrated a novel mechanism of the miR-30c-1-3p/miR-103a-2-5p/AR-V7 axis modulating the cell proliferation of AR-positive prostate cancer cells via AR downstream targets. The clinical application of miR-30c-1-3p/miR-103a-2-5p needs further in vivo validation.  相似文献   

8.
Most prostate cancers (Pcas) develop into castration-resistant prostate cancer (CRPC) after receiving androgen deprivation therapy (ADT). The expression levels of PLCε and wnt3a are increased in Pca and regulate androgen receptor (AR) activity. However, the biological function and mechanisms of PLCε and wnt3a in CRPC remain unknown. In this study, we found that the expression levels of PLCε, wnt3a, and AR were significantly increased in CRPC tissues as well as bicalutamide-resistant-LNCaP and enzalutamide-resistant-LNCaP cells. In addition, PLCε knockdown partly restored the sensitivity of drug-resistant cells to bicalutamide and enzalutamide by inhibiting the activity of the wnt3a/β-catenin/AR signaling axis. Interestingly, the resistance of LNCaP cells docetaxel is related to PLCε but not the wnt3a/β-catenin pathway. We also found that the combination of PLCε knockdown and enzalutamide treatment synergistically suppressed cell proliferation, tumor growth, and bone metastasis using in vitro and in vivo experiments. Our study revealed that PLCε is involved in the progression of drug-resistance in CRPC and could be a new target for the treatment of CRPC.  相似文献   

9.
Most advanced prostate cancer (PCa) patients initially respond well to androgen deprivation therapy, but almost all eventually develop castration-resistant prostate cancer (CRPC). Early studies indicated the bipolar androgen therapy via a cycling of high dose and low dose of androgen to suppress PCa growth might be effective in a select patient population. The detailed mechanisms, however, remain unclear. Here we found the capacity of natural killer (NK) cells to suppress the CRPC cells could be suppressed by a high dose of dihydrotestosterone (DHT). Mechanism dissection indicates that transactivated AR can increase circularRNA-FKBP5 (circFKBP5) expression, which could sponge/inhibit miR-513a-5p that suppresses the PD-L1 expression via direct binding to its 3ʹUTR to negatively impact immune surveillance from NK cells. Preclinical data from in vitro cell lines and an in vivo mouse model indicate that targeting PD-L1 with sh-RNA or anti-PD-L1 antibody can enhance the high dose DHT effect to better suppress CRPC cell growth. These findings may help us to develop novel therapies via combination of high dose androgen with PD-1/PD-L1 checkpoint inhibitors to better suppress CRPC progression.Subject terms: Cell signalling, Prostate cancer  相似文献   

10.
Despite the existence of effective antiandrogen therapy for prostate cancer, the disease often progresses to castration-resistant states. Elucidation of the molecular mechanisms underlying the resistance for androgen deprivation in terms of the androgen receptor (AR)-regulated pathways is a requisite to manage castration-resistant prostate cancer (CRPC). Using a ChIP-cloning strategy, we identified functional AR binding sites (ARBS) in the genome of prostate cancer cells. We discovered that a centrosome- and microtubule-interacting gene, transforming acidic coiled-coil protein 2 (TACC2), is a novel androgen-regulated gene. We identified a functional AR-binding site (ARBS) including two canonical androgen response elements in the vicinity of TACC2 gene, in which activated hallmarks of histone modification were observed. Androgen-dependent TACC2 induction is regulated by AR, as confirmed by AR knockdown or its pharmacological inhibitor bicalutamide. Using long-term androgen-deprived cells as cellular models of CRPC, we demonstrated that TACC2 is highly expressed and contributes to hormone-refractory proliferation, as small interfering RNA-mediated knockdown of TACC2 reduced cell growth and cell cycle progression. By contrast, in TACC2-overexpressing cells, an acceleration of the cell cycle was observed. In vivo tumor formation study of prostate cancer in castrated immunocompromised mice revealed that TACC2 is a tumor-promoting factor. Notably, the clinical significance of TACC2 was demonstrated by a correlation between high TACC2 expression and poor survival rates. Taken together with the critical roles of TACC2 in the cell cycle and the biology of prostate cancer, we infer that the molecule is a potential therapeutic target in CRPC as well as hormone-sensitive prostate cancer.  相似文献   

11.
Background Studies have shown that AR-V7 may be correlated with the poor prognosis of castration resistant prostate cancer (CRPC), however, clinicopathological characteristics of AR-V7 have not been fully elucidated.ObjectiveThis study aimed at evaluating the clinicopathological features of AR-V7 in CRPC patients.Materials and methodsTo evaluate the clinicopathological features of AR-V7 in CRPC patients. A search of PubMed, Embase, and Web of Science was performed using the keywords prostate cancer, prostate tumor, prostate neoplasm, prostate carcinoma, AR-V7, AR3, androgen receptor splicing variant-7, or androgen receptor-3. Twenty-four trials published by February 2020 were included in this study.ResultsThe proportion of Gleason score ≥ 8 was found to be significantly higher in AR-V7-positive CRPC (69.5%) than negative (54.9%) (OR 1.68, 95% CI 1.25–2.25, p < 0.001), while the rates of T3/T4 stage (OR 1.16, 95% CI 0.60–2.24, p = 0.65) and N1 stage (OR 0.99, 95% CI 0.65–1.51, p = 0.96) were not statistically correlated with AR-V7 status. The AR-V7-positive patients exhibited a significantly higher proportion of any site metastasis (61.3% versus 35.0%; OR 2.19, 95% CI 1.57–3.05, p < 0.001) and bone metastasis (81.7% versus 69.0%; OR 1.97, 95% CI 1.44–2.69, p < 0.001), and a trend close to significance was expected in visceral metastasis (28.8% versus 22.1%; OR 1.29, 95% CI 0.96–1.74, p = 0.09). Incidences of pain in AR-V7-positive CRPC (54.6%) were significantly higher than in negative CRPC (28.1%; OR 4.23, 95% CI 2.52–7.10, p < 0.001), line with worse ECOG performance status (56.7% versus 35.0%, OR 2.18, 95% CI 1.51–3.16, P < 0.001). Limitations of the study include differences in sample sizes and designs, AR-V7 detection assays, as well as disease characteristics of the included studies.ConclusionsAR-V7 positivity is associated with a higher Gleason score, bone or any site metastasis, pain and worse ECOG performance scores in CRPC. However, it is not correlated with tumor stage or lymph node metastasis. More studies are needed to confirm these findings.  相似文献   

12.
13.
The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin-specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit.  相似文献   

14.
In order to generate genomic signals, the androgen receptor (AR) has to be transported into the nucleus upon androgenic stimuli. However, there is evidence from in vitro experiments that in castration-resistant prostate cancer (CRPC) cells the AR is able to translocate into the nucleus in a ligand-independent manner. The recent finding that inhibition of the glycogen-synthase-kinase 3β (GSK-3β) induces a rapid nuclear export of the AR in androgen-stimulated prostate cancer cells prompted us to analyze the effects of a GSK-3β inhibition in the castration-resistant LNCaP sublines C4-2 and LNCaP-SSR. Both cell lines exhibit high levels of nuclear AR in the absence of androgenic stimuli. Exposure of these cells to the maleimide SB216763, a potent GSK-3β inhibitor, resulted in a rapid nuclear export of the AR even under androgen-deprived conditions. Moreover, the ability of C4-2 and LNCaP-SSR cells to grow in the absence of androgens was diminished after pharmacological inhibition of GSK-3β in vitro. The ability of SB216763 to modulate AR signalling and function in CRPC in vivo was additionally demonstrated in a modified chick chorioallantoic membrane xenograft assay after systemic delivery of SB216763. Our data suggest that inhibition of GSK-3β helps target the AR for export from the nucleus thereby diminishing the effects of mislocated AR in CRPC cells. Therefore, inhibition of GSK-3β could be an interesting new strategy for the treatment of CRPC.  相似文献   

15.
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients.  相似文献   

16.
17.
18.
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.  相似文献   

19.
Androgen deprivation therapy has been the standard of care in prostate cancer due to its effectiveness in initial stages. However, the disease recurs, and this recurrent cancer is referred to as castration-resistant prostate cancer (CRPC). Radiotherapy is the treatment of choice; however, in addition to androgen independence, CRPC is often resistant to radiotherapy, making radioresistant CRPC an incurable disease. The molecular mechanisms by which CRPC cells acquire radioresistance are unclear. Androgen receptor (AR)-tyrosine 267 phosphorylation by Ack1 tyrosine kinase (also known as TNK2) has emerged as an important mechanism of CRPC growth. Here, we demonstrate that pTyr(267)-AR is recruited to the ATM (ataxia telangiectasia mutated) enhancer in an Ack1-dependent manner to up-regulate ATM expression. Mice engineered to express activated Ack1 exhibited a significant increase in pTyr(267)-AR and ATM levels. Furthermore, primary human CRPCs with up-regulated activated Ack1 and pTyr(267)-AR also exhibited significant increase in ATM expression. The Ack1 inhibitor AIM-100 not only inhibited Ack1 activity but also was able to suppress AR Tyr(267) phosphorylation and its recruitment to the ATM enhancer. Notably, AIM-100 suppressed Ack1 mediated ATM expression and mitigated the growth of radioresistant CRPC tumors. Thus, our study uncovers a previously unknown mechanism of radioresistance in CRPC, which can be therapeutically reversed by a new synergistic approach that includes radiotherapy along with the suppression of Ack1/AR/ATM signaling by the Ack1 inhibitor, AIM-100.  相似文献   

20.
While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号