首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of temperature (4–20°C), relative humidity (RH, 0–100%), pH (3–7), availability of nutrients (0–5 g/l sucrose) and artificial light (0–494 μmol/m2/s) on macroconidial germination of Fusarium graminearum were studied. Germ tubes emerged between 2 and 6 h after inoculation at 100% RH and 20°C. Incubation in light (205 ± 14 μmol/m/s) retarded the germination for approximately 0.5 h in comparison with incubation in darkness. The times required for 50% of the macroconidia to germinate were 3.5 h at 20°C, 5.4 h at 14°C and 26.3 h at 4°C. No germination was observed after an incubation period of 18 h at 20°C in darkness at RH less than 80%. At RH greater than 80%, germination increased with humidity. Germination was observed when macroconidia were incubated in glucose (5 g/l) or sucrose (concentration range from 2.5 × 10?4 to 5 g/l) whereas no germination was observed when macroconidia were incubated in sterile deionized water up to 22 h. Macroconidia germinated quantitatively within 18 h at pH 3–7. Repeated freezing (?15°C) and thawing (20°C) water agar plates with either germinated or non‐germinated macroconidia for up to five times did not prevent fungal growth after thawing. However, the fungal growth rate of mycelium was negatively related to the number of freezing events the non‐germinated macroconidia experienced. The fungal growth rate of mycelium was not significantly affected by the number of freezing events the germinated spores experienced. Incubation of macroconidia at low humidity (0–53% RH) suppressed germination and decreased the viability of the spores.  相似文献   

2.
Hyaline, non pigmented microconidia of Sporothrix schenckii were harvested and allowed to form germ tubes in a basal medium with glucose at pH 4.0 and 25 °C. These conditions supported only the development of the mycelial form of Sporothrix schenckii in a reproducible, synchronized manner which allowed further analysis of the early cellular events ocurring during the germination of the conidia. The relationship between macromolecular synthesis (DNA, RNA and protein synthesis) and nuclear division, hyphal growth and septum formation were established. Following inoculation, protein synthesis was observed after 10 minutes followed by RNA synthesis, after 1 h and DNA synthesis after 2 h. The first nuclear division was observed during the 9 to 12 h interval after inoculation. Germ tube formation slightly preceeded nuclear division and was first evidenced 9 h after the induction of germination but was not completed until 12 h after inoculation. Septation was first observed in the germ tubes 0.25 m from the mother cell-germ tube function 9 h after induction of germination.  相似文献   

3.
Conidia ofC. acremonium require an exogenous supply of carbon, nitrogen, magnesium, and phosphate for swelling and germ tube formation. Germination is stimulated by supplementing the medium with sulfate. Maximum frequency of germination occurs at a temperature of 27° to 32°C and a pH of 8.0. Conidia swell at pH 4.0 to 5.5 but do not form germ tubes. Conidia allowed to swell at pH 5.5 initiate germ tube formation immediately when the pH is adjusted to 7.5. Under optimal conditions, over 95 percent of the spore population formed germ tubes by 13 hours.  相似文献   

4.
Summary The dry mass of two-celled Diplodia maydis spores was measured both before and after germination by quantitative interference microscopy. The dry mass of spores declined approximately 50% during germination. However, the dry mass of germinating spores plus the dry mass of their germ tubes was greater than the dry mass of spores before germination. We conclude that the germinating spores absorbed nutrients released from non-germinating spores.The dry mass of fungal spores can be estimated by weighing large numbers of spores and determining the mean from sample spore counts. Mumford and Pappelis(4) determined the total dry mass of individual spores of Fusarium roseum and the contained lipid bodies before and after spores germinated using quantitative interference microscopy. The mean spore dry mass before germination was 57 pg. Lipid bodies accounted for about 61% of that mass and decreased as spores germinated. The total dry mass of the spore and germ tube 24 hr later greatly exceeded that of the spore before germination. Quantitative interference microscopy has been used to measure the dry mass of various types of cells. Kulfinski and Pappelis (3) recently reviewed how this technique has been applied to plant cells. Technical aspects of interference microscopy have been described by Ross (6).The purpose of this study was to examine the dry mass changes in Diplodia maydis (Berk.) Sacc. with and without germ tubes through the use of interference microscopy.  相似文献   

5.
The kinetics of the development of the mycelial form of Sporothrix schenckii from yeast cells and conidia in a minimal basal medium with glucose at pH 4.0 and 25 °C were established. Germ tube formation was used as the index of germination for both yeast cells and conidia. Yeast cells were first observed to develop germ tubes after 3 h of incubation, reaching 92±5%, after 12 h of incubation. Germ tubes were first detected in conidia after 9 h of incubation, and 12 h after inoculation 92±6% of the conidia had germ tubes. After 24 h of incubation, fully developed, sporulating mycelia were observed from both yeast cells and conidia. A delay in germ tube formation from yeast cells was observed when But2cAMP(10 mM) and But2cGMP (10 mM) were added to the medium. Also the addition of caffeine, a cyclic nucleotide phosphodiesterase inhibitor, inhibited the yeast to mycelial transition. Conidial germination into the mycelial form was also inhibited when cAMP, But2cAMP and caffeine were added to the medium. These results suggest the possible involvement of cyclic nucleotides in the control of dimorphism in S. schenckii.  相似文献   

6.
Ascospores of both A‐group and B‐group Leptosphaeria maculans germinated at temperatures from 5–20°C on distilled water agar or detached oilseed rape leaves. After 2 h of incubation on water agar, some A‐group ascospores had germinated at 10–20°C and some B‐group ascospores had germinated at 5–20°C. The percentages of both A‐group and B‐group ascospores that had germinated after 24 h of incubation increased with increasing temperature from 5–20°C. The observed time (Vo50) which elapsed from inoculation until 50% of the spores had germinated was shorter for B‐group than for A‐group ascospores. Germ tube length increased with increasing temperature from 5–20°C for both ascospore groups. Germ tubes from B‐group ascospores were longer than germ tubes from A‐group ascospores at all temperatures tested, but the mean diameter of germ tubes from A‐group ascospores (1.8 μm) was greater than that of those from B‐group ascospores (1.2μm) at 15°C and 20°C. The average number of germ tubes produced from A‐group ascospores (3.8) was greater than that from B‐group ascospores (3.1) after 24 h of incubation at 20°C, on both water agar and leaf surfaces. Germ tubes originated predominantly from interstitial cells or terminal cells of A‐group or B‐group ascospores, respectively, on both water agar and leaf surfaces. Hyphae from A‐group ascospores grew tortuously with extensive branching, whilst those from B‐group ascospores were predominantly long and straight with little branching, whether the ascospores were produced from oilseed rape debris or from crosses between single ascospore isolates, and whether ascospores were germinating on water agar or leaf surfaces.  相似文献   

7.
Microsphaeropsis amaranthi and Phomopsis amaranthicola are potential biological control agents for several Amaranthus species. In an effort to understand the initial infection processes with these pathogens, a study was conducted of the conidial germination and germ tube length (μm) on the weed leaf surfaces at 21 °C and 28 °C. Weeds included Amaranthus rudis, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A. hybridus, and A. albus. For P. amaranthicola, conidial germination and germ tube length varied among the seven weed species at both temperatures, while for M. amaranthi the differences in germ tube lengths were significant among weed species only at 21 °C. While the conidia of M. amaranthi and P. amaranthicola germinated on the leaf surfaces of all seven weed species, temperature appeared to impact the number and length of germ tubes on the leaf surfaces. The percentage of germinated conidia and the length of germ tubes at both temperatures were often greater for M. amaranthi than for P. amaranthicola. In order for the fungal pathogen to successfully infect and kill a weedy host, conidia must germinate and form a germ tube, two processes that vary with host species and temperature for M. amaranthi and P. amaranthicola. The extent to which successive infection processes, e.g., penetration, invasion and colonization, contribute to host specificity warrants study.  相似文献   

8.
Sporangiospores of Pilobclus longipes germinated on a medium containing ascorbate and FeSO4, but neither ascorbate nor FeSO4 alone caused spores to germinate. The iron chelates (hemin, coprogen, and ferrichrome) that are known to promote mycelial growth of this and other species of Pilobolus had little or no effect on spore germination, suggesting that under these conditions dormant spores are unable to reduce iron III.Regardless of the medium used, maximum germination required treatment at two temperatures. The early stage of germination, spherical growth, was favored by treatment for several hours at about 38°C while optimum germ tube formation required incubation at lower temperatures (25°C). Under most conditions the requirement for a heat treatment was nearly absolute.When the iron-ascorbate and the heat treatments were separated it was found that they need not be applied simultaneously provided that iron and ascorbate are given first. Spores that were heated first and then given iron and ascorbate at lower temperatures did not germinate. Apparently dormancy of these spores is broken by available iron but a heat treatment is usually required to complete the germination process.  相似文献   

9.
Summary All possible crosses among 5 strains of Gossypium hirsutum were made, and the pollen tubes were grown in vivo for 4 h before being fixed, stained and measured. Temperatures ranging from 18.5 to 40.0 °C were tested for pollen germination and pollen tube growth. The optimal temperature for pollen tube growth was 30.0 °C. Relative humidity levels of 0 to 100% were used as a pre-pollination treatment of the pollen. Significant differences among the mean pollen tube length of the strains occurred due to pollenXstyle interactions. The strains also differed in the number of styles which did not support pollen tube growth. These differences were also due to pollenXstyle interactions. Pollen and style strains could be ranked according to their relative contribution to pollen tube length.College of Agricultural Sciences Publication Number T-4-189  相似文献   

10.
The total dry mass of Fusarium roseum spores and contained lipid bodies were determined before and after spores germinated using quantitative interference microscopy. The mean for spore dry mass before germination was about 57 pg. Lipid bodies accounted for about 61% of that. Areas of lipid bodies in spores before and after germination were about 23 % but the contents of the lipid bodies accounted for only 10% of the spore dry mass after germination. The total dry mass of the spore and germ tube(s) greatly exceeded that of the spore before germination. We infer that nutrients for germ tube growth are derived from within the germinating spore and from the medium which must contain nutrients leached from non-germinating spores.  相似文献   

11.
Summary The prolonged exposure of pollen Nicotiana tabacum to high humidity at both room temperature and 38° C did not affect membrane integrity as revealed by the fluorochromatic reaction (FCR) test, but did affect pollen vigour. At room temperature germination was not affected, although tube growth was reduced; at 38° C, there was both a reduction in tube growth and delayed germination. When the pollen was subjected to 1 h hydration followed by 1 h desiccation (up to a maximum of four cycles) at room temperature, a reduction in the FCR, germination and tube length after each desiccation treatment was observed. Subsequent hydration fully restored the FCR, but only partially restored germination and tube growth. At 38° C, however, FCR, germination, and tube growth were drastically reduced. The implications of these results on the relationship between FCR and germinability, the responses of pollen exposed to humidity and temperature stress in the field, and on pollen storage are discussed.  相似文献   

12.
Tertiary butyl hydroperoxide (t-BOOH) was found to be sporicidal for Bacillus megaterium ATCC19213. Sporicidal action was very temperature dependent, and the potency of t-BOOH increased about tenfold for each increase in temperature of 15 °C over the range from 30° to 70 °C. At still higher temperatures, heat and molar levels of t-BOOH were mutually potentiating for killing. Vegetative cells and germinated spores were some thousand times less resistant to t-BOOH than dormant spores. The order of resistance for spores was: Bacillus stearothermophilus ATCC7953 > Bacillus subtilis var. niger = Bacillus megaterium ATCC33729 > Bacillus megaterium ATCC19213. Killing was not enhanced by decoating and occurred without germination or loss of refractility of the spores. Spore resistance to t-BOOH was lower at more acid pH values and was decreased also by demineralization. Spores could be protected by the chelator o-phenanthroline, especially in association with Fe2+. Overall, it seemed that killing was associated with nonmetabolic formation of alkyl peroxyl radicals, which are thought to be responsible for killing of vegetative cells by organic hydroperoxides.Abbreviation A-BOOH tertiary butyl hydroperoxide  相似文献   

13.
The rates of germ tube elongation in vitro of pollen from cherry leaf roll virus (CLRV)-infected birch (Betula pendula) did not differ significantly from those of pollen from virus-free trees. Differences in percentage germination of pollen collected from trees at different sites were significant but percentages of germination of pollen from virus-infected and virus-free trees did not differ greatly from one another. In vivo, pollen from infected trees germinated on healthy and CLRV-infected stigmas and callose plugs formed in both types of tissues. However, the extent of callose plug formation was greater in the pollen tubes of virus-free grains germinating in infected stigmas than in reciprocal crosses. CLRV coat antigen was detected by ELISA in stigmatic tissue, from healthy trees, on which virus-carrying pollen grains had germinated. Using fluorescein isothiocyanate conjugated to CLRV-specific γ-globulin, viral coat antigen was detected throughout germ tubes from virus-carrying but not virus-free pollen germinating in vitro. Protoplasts released following Driselase digestion of pollen germ tubes from virus-infected trees contained CLRV antigen detectable by ELISA. During germination of virus-infected pollen there was little synthesis of viral coat protein or nucleic acid but, following inoculation with purified virus particles, protoplasts made from healthy germinating pollen produced increasing amounts of CLRV-specific antigen implying that CLRV replicated in this system.  相似文献   

14.
The germination, infectivity and survival of pycnidiospores obtained from cultures of Mycosphaerella ligulicola grown at 15 and 26 °C were compared. Spores formed at 26° (‘26° spores’) were less able to germinate at low relative humidities and showed a narrower temperature range for maximum germination after 6 h. At high spore densities 26° spores showed self-inhibition of germination and, over a range of lower densities, growth of their germ tubes was checked, which resulted in lower infection of leaf discs compared with 15° spores in which this phenomenon did not occur. The fungus could be recovered from un-sterile compost over a longer period after inoculation with 15° spores. Only after storage at a temperature well below zero was there a difference in viability between 15° and 26° spores. It is thought that the potential advantage of producing larger numbers of spores at 26° would be realized only under optimum conditions for dispersal and infection. The smaller number of spores produced at 15° are likely to be successful under natural conditions.  相似文献   

15.
In conidia of Neurospora crassa germinating at 25°C, DNA synthesis measured by incorporation of tritiated adenosine reaches a maximum soon after the outgrowth of the germ tube (6–7h after inoculation). In conidia heat-treated at 46°C (for 15h), a maximum of incorporation of the DNA precursor occurs already 1h after inoculation, then the incorporation progressively declines until the end of the heat-shock. When such conidia are shifted to 25°C, a maximum of DNA synthesis occurs during the development of the presumptive conidiophore as at the outgrowth of normal germ tubes. This wave of DNA synthesis is followed by a second maximum of DNA synthesis, occurring only in the microcyclized cultures, when the premature differentiation of proconidia takes place. Prevention of this second wave of DNA synthesis with hydroxyurea or 5-fluorodeoxyuridine respectively reduces or fully inhibits such induced conidial differentiation.  相似文献   

16.
The effect of light on uredospore germination and germ tube growth of Phakopsora pachyrhizi was studied. Frequency of uredospore germination was only partially reduced by high light intensity (> 1,9 * 104 mW * m?2). In uredospores unilaterally irradiated with polychromatic light germ tubes always emerged from the shadowed side. Already developed germ tubes showed a negative phototropic response. Both effects were inducible by low light intensities. Negative phototropism of germ tubes was a blue light effect. Light of 441 nm was more effective than that of 422 nm or 372 nm. Red light (> 600 nm) was ineffective, green light (513 nm) induced medium responses. In half-side illumination studies longitudinal halves of germ tube tips and spores were irradiated under a microscope. The tips of the germ tubes bent into the illuminating beam. In half-side illumination studies germ tubes always emerged from the illuminated spore halves. Under unilateral illumination liquid paraffin reversed this light “polarization” of spores and the negative phototropism of germ tubes. These results suggest that during unilateral illumination spores and germ tube tips act as a lens focussing the light on the wall farthest away from the light source., There, in uredospores emergence of germ tubes is stimulated and in germ tubes growth is inhibited. As a consequence, under unilateral illumination germ tubes emerge at the shadowed side of the spores and grow away from the light.  相似文献   

17.
The effects of light on the spore germination of a hornwort species,Anthoceros miyabeanus Steph., were investigated. Spores of this species were photoblastic, but their sensitivities to light quality were different. Under either continuous white, red or diffused daylight, more than 80% of the spores germinated, but under blue light none or a few of them germinated. Under continuous far-red light or in total darkness, the spores did not germinate at all.Anthoceros spores required red light irradiation for a very long duration, i.e., over 12–24 hr of red light for saturated germination. However, the spore germination showed clear photo-reversibility by repeated irradiation of red and far-red light. The germination pattern clearly varied with the light quality. There were two fundamental patterns; (1) cell mass type in white or blue light: spores divide before germination, and the sporelings divide frequently and form 1–2 rhizoids soon after germination, and (2) germ tube type in red light: spores germinate without cell division, and the single-cell sporelings elongate without cell division and rhizoid formation.  相似文献   

18.
The nutritional conditions for the germination of spores of Streptomyces galbus 5ME-13 were determined under laboratory conditions. The germination of the spores was intiated by the emergence of 1–2 germ tubes after the second hour of incubation and attained its maximum at the sixth hour. This was accompanied by a steady rise in the optical density of the germinating spore suspension. A malt-extract yeast-extract medium was found to be the best medium for the germination of the spores. Glycerol as the sole source of carbon was the best supporter for spore germination while, as N source, L-alanine was preferred. The optimum pH and temperature for spore germination were 7.2 and 30°C, respectively.  相似文献   

19.
Effects of undecanoic acid (UDA) on germination of microconidia and elongation of germ tubes in UDA sensitive (uda s) wild type Trichophyton rubrum and UDA resistant (uda r) mutant derived from it, were studied. UDA inhibited conidial germination of uda s and uda r strains at 30 g/ml and 120 g/ml respectively which were minimum inhibitory concentrations of UDA for these two strains. When spores from both uda s and uda r were germinated in presence of subinhibitory concentration of UDA, germ tube growth was short. The elongation of germ tubes of spores pregerminated in absence of UDA was also inhibited by dose of UDA not sufficient to inhibit germination.  相似文献   

20.
Twenty four fungi were isolated from ear wax or otitis media of agricultural field workers, of which 18 are being reported for the first time from India. Direct observation, revealed the presence of hyphal fragments, spores of Alternaria, Bipolaris, conidial head of Aspergillus, smut teliospores and pollen. Spores of only four fungi, Alternaria humicola, Aspergillus niveus, Bipolaris spicifera and Fusarium moniliforme germinated in otitis media at 37 ° C, and their germination was affected by relative humidity. Alternaria humicola and Aspergillus niveus appeared to be the causative agents of otomycosis, and otitis media is fungistatic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号