共查询到20条相似文献,搜索用时 10 毫秒
1.
Thymol and Carvacrol Prevent Doxorubicin‐Induced Cardiotoxicity by Abrogation of Oxidative Stress,Inflammation, and Apoptosis in Rats 下载免费PDF全文
El‐Sayed M. El‐Sayed Ahmed M. Mansour Mohammed S. Abdul‐Hameed 《Journal of biochemical and molecular toxicology》2016,30(1):37-44
The aim of this study was to assess the possible protective effects of thymol and carvacrol (CAR) against doxorubicin (DOX)‐induced cardiotoxicity. A single dose of DOX (10 mg/kg i.v.) injected to male rats revealed significant increases in serum lactate dehydrogenase, creatine kinase, creatine kinase isoenzyme‐MB, aspartate transaminase, tumor necrosis factor‐alpha, and cardiac troponin levels. It also increased heart contents of malondialdehyde and caspase‐3 accompanied by a significant reduction in heart content of reduced glutathione as well as catalase and superoxide dismutase activity as compared with the control group. In contrast, administration of thymol (20 mg/kg p.o.) and/or CAR (25 mg/kg p.o.) for 14 days before DOX administration and for 2 days after DOX injection ameliorated the heart function and oxidative stress parameters. Summarily, thymol was more cardioprotective than CAR. Moreover, a combination of thymol and CAR had a synergistic cardioprotective effect that might be attributed to antioxidant, anti‐inflammatory, and antiapoptotic activities. 相似文献
2.
Ca(2+) is well known for its role as crucial second messenger in modulating many cellular physiological functions, Ca(2+) overload is detrimental to cellular function and may present as an important cause of cellular oxidative stress generation and apoptosis. The aim of this study is to investigate the effects of selenium on lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), cytosolic Ca(2+) release, cell viability (MTT) and apoptosis values in dorsal root ganglion (DRG) sensory neurons of rats. DRG cells were divided into four groups namely control, H(2)O(2) (as a model substance used as a paradigm for oxidative stress), selenium, selenium + H(2)O(2). Moderate doses and times of H(2)O(2) and selenium were determined by MTT test. Cells were preterated 200 nM selenium for 30 h before incubatation with 1 μM H(2)O(2) for 2 h. Lipid peroxidation levels were lower in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. GSH-Px activities were higher in the selenium groups than in the H(2)O(2) group. GSH levels were higher in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. Cytosolic Ca(2+) release was higher in the H(2)O(2) group than in the control, selenium, selenium + H(2)O(2) groups. Cytosolic Ca(2+) release was lower in the selenium + H(2)O(2) group than in the H(2)O(2). In conclusion, the present study demonstrates that selenium induced protective effects on oxidative stress, [Ca(2+)](c) release and apoptosis in DRG cells. Since selenium deficiency is a common feature of oxidative stress-induced neurological diseases of sensory neurons, our findings are relevant to the etiology of pathology in oxidative stress-induced neurological diseases of the DRG neurons. 相似文献
3.
目的:研究氧化应激诱导的内皮细胞micro RNA的表达变化。方法:ECM(Endothelial Cell Medium)培养人脐静脉内皮细胞,利用不同浓度双氧水(0μmol/L,200μmol/L,500μmol/L,800μmol/L)刺激24小时后应用流式细胞术检测其凋亡水平。提取细胞总RNA,利用实时定量PCR(Quantitive real-time PCR;q RT-PCR)检测micro RNA表达量变化,并利用生物信息学软件预测可能的靶基因。结果:加入不同浓度双氧水处理24 h后的内皮细胞总凋亡率均显著高于对照组,200μmol/L、500μmol/L和800μmol/L组的凋亡率分别为(13.31%vs 4.75%,35.9%vs 4.75%,89.75%vs 4.75%,P0.01)。200μmol/L的双氧水处理内皮细胞后,micro RNA的表达出现了明显的改变。其中mi R-92a、mi R-126的表达明显下调(P0.05),mi R-181a、mi R-217、mi R-34a和mi R-320的表达明显上调(P0.05)。靶基因预测显示mi R-320、mi R-92a可能调控多个和内皮细胞凋亡相关的基因表达。结论:在氧化应激诱导的内皮细胞凋亡中,mi RNA表达发生改变并可能参与调控内皮细胞功能。 相似文献
4.
5.
Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates
that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present
study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic
effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for
a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after
28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2,
5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed
that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was
accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation
(43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and
functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to
the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial
functions leading to oxidative stress and neurobehavioral deficits. 相似文献
6.
7.
8.
Glioblastoma patients receive anti-inflammatory agent for alleviation of vasogenic edema and pain prior to surgery, radiotherapy,
and chemotherapy. Oxidative stress is an important mechanism of action of some chemotherapeutic agents in the treatment of
glioblastoma. So, we examined the modulatory effects of methylprednisolone (MP, a steroidal anti-inflammatory agent) and indomethacin
(IM, a non-steroidal anti-inflammatory agent) on apoptosis in rat C6 glioblastoma cells following oxidative stress with hydrogen
peroxide (H2O2). Exposure of C6 cells to 1 mM H2O2 for 24 h caused significant amounts of morphological and biochemical features of apoptosis. Expressions of Bax and Bcl-2
at mRNA and protein levels were altered resulting in an increase in Bax : Bcl-2 ratio in apoptotic cells, which also exhibited
overexpression of 80 kDa calpain and an increase in calpain-cleaved 145 kDa α-spectrin breakdown product. Immunofluorescent
and propidium iodide labeling detected caspase-3-p20 fragment in apoptotic cells, indicating activation of caspase-3 as well.
Treatment of cells with 1 μM MP or 10 μM IM alone did not induce apoptosis. Pretreatment (1 h) with either 1 μM MP or 10 μM
IM significantly inhibited H2O2 mediated apoptosis in C6 cells. Thus, pretreatment of glioblastoma with an anti-inflammatory agent, either steroidal or non-steroidal,
may compromise the action of a chemotherapeutic agent that mediates therapeutic action via oxidative stress. 相似文献
9.
Jicang Wang Huali Zhu Xuezhong Liu Zongping Liu 《Biological trace element research》2014,161(2):180-189
Cadmium (Cd) is an important industrial and environmental pollutant. In animals, the liver is the major target organ of Cd toxicity. In this study, rat hepatocytes were treated with 2.5~10 μM Cd for various durations. Studies on nuclear morphology, chromatin condensation, and apoptotic cells demonstrate that Cd concentrations ranging within 2.5~10 μM induced apoptosis. The early-stage marker of apoptosis, i.e., decreased mitochondrial membrane potential, was observed as early as 1.5 h at 5 μM Cd. Significant (P?0.01) reactive oxygen species (ROS) production at 5 μM Cd and 0.75 h occurred prior to the decrease of the mitochondrial membrane potential, suggesting the involvement of ROS in mitochondrial membrane damage. Glutathione (GSH) level significantly decreased after cell treatment with 5 and 10 μM Cd after 12 h (P?0.01). Meanwhile, the intracellular free Ca2+ concentration ([Ca2+] i ) of Cd-exposed cells significantly increased (P?0.01) at 1.5 h, and pretreatment with the calcium chelator Bapta-AM partially blocked Cd-induced apoptosis. This finding indicated that the elevation of [Ca2+] i may play an important role in apoptosis. Overall, these results showed that oxidative stress and Ca2+ signaling were critical mediators of the Cd-induced apoptosis of rat hepatocytes. 相似文献
10.
SH Lee MH Park SM Kang SC Ko MC Kang S Cho PJ Park BT Jeon SK Kim JS Han YJ Jeon 《Bioscience, biotechnology, and biochemistry》2012,76(8):1445-1451
Pancreatic β cells are very sensitive to oxidative stress and this might play an important role in β cell death with diabetes. The protective effect of dieckol, one of the phlorotannin polyphenol compounds purified from Ecklonia cava (E. cava), against high glucose-induced oxidative stress was investigated by using rat insulinoma cells. A high-glucose (30 mM) treatment induced the death of rat insulinoma cells, but dieckol, at a concentration 17.5 or 70 μM, significantly inhibited the high-glucose induced glucotoxicity. Treatment with dieckol also dose-dependently reduced thiobarbituric acid reactive substances (TBARS), the generation of intracellular reactive oxygen species (ROS), and the nitric oxide level increased by a high glucose concentration. In addition, the dieckol treatment increased the activities of antioxidative enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in high glucose-pretreated rat insulinoma cells. Dieckol protected rat insulinoma cells damage under high glucose conditions. These effects were mediated by suppressing apoptosis and were associated with increased anti-apoptotic Bcl-2 expression, and reduced pro-apoptotic cleaved caspase-3 expression. These findings indicate that dieckol might be useful as a potential pharmaceutical agent to protect against the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes. 相似文献
11.
12.
Shizhu Chen Yingjian Hou Gong Cheng Cuimiao Zhang Shuxiang Wang Jinchao Zhang 《Biological trace element research》2013,154(1):156-166
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future. 相似文献
13.
Rajarajan A. Thandavarayan Vijayasree V. Giridharan Somasundaram Arumugam Kenji Suzuki Kam Ming Ko Prasanna Krishnamurthy Kenichi Watanabe Tetsuya Konishi 《PloS one》2015,10(3)
Doxorubicin (Dox) is a highly effective antineoplastic drug. However, Dox-induced apoptosis in cardiomyocytes leads to irreversible degenerative cardiomyopathy, which limits Dox clinical application. Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In current study, we investigated possible protective effects of Sch B against Dox-induced cardiomyopathy in mice. Mice received a single injection of Dox (20 mg/kg IP). Five days after Dox administration, left ventricular (LV) performance was significantly depressed and was improved by Sch B treatment. Sch B prevented the Dox-induced increase in lipid peroxidation, nitrotyrosine formation, and metalloproteinase activation in the heart. In addition, the increased expression of phospho-p38 MAPK and phospho-MAPK activated mitogen kinase 2 levels by Dox were significantly suppressed by Sch B treatment. Sch B also attenuated Dox-induced higher expression of LV proinflammatory cytokines, cardiomyocyte DNA damage, myocardial apoptosis, caspase-3 positive cells and phopho-p53 levels in mice. Moreover, LV expression of NADPH oxidase subunits and reactive oxygen species were significantly less in Sch B treatment mice after Dox injection. These findings suggest that Sch B attenuates Dox-induced cardiotoxicity via antioxidative and anti-inflammatory effects. 相似文献
14.
15.
Chinnasamy Dhanalakshmi Udaiyappan Janakiraman Thamilarasan Manivasagam Arokiasamy Justin Thenmozhi Musthafa Mohamed Essa Ameer Kalandar Mohammed Abdul Sattar Khan Gilles J. Guillemin 《Neurochemical research》2016,41(8):1899-1910
Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson’s disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD. 相似文献
16.
Suganya Sekaran Selvakumar Kandaswamy Krishnamoorthy Gunasekaran Elumalai Perumal Fariya Yasmine Afsar Basha Balasakthi Janani Madhan Mohan Arunakaran Jagadeesan 《Journal of biochemical and molecular toxicology》2012,26(12):522-532
The present study aims to investigate the protective effect of quercetin against Aroclor‐1254–induced hepatotoxicity in rats. Male Wistar rats were grouped into Group I control received vehicle (corn oil; 1 mL/kg bwt); Group II quercetin alone (50 mg/kg bwt/day orally); Group III Aroclor‐1254 (2 mg/kg bwt/day intraperitoneally); Group IV Aroclor‐1254 + quercetin treated for 30 days. The Aroclor‐1254 treatment caused significant alteration in the biochemical parameters (hydrogen peroxide, lipid peroxidation, reduced glutathione levels, and alkaline phosphatase activity). The expressions of apoptotic and antiapoptotic proteins and the liver histology of Aroclor‐1254–exposed rats showed cytoplasmic degeneration along with infiltration of polymorphonuclear cells. Whereas simultaneous treatment with quercetin normalized all the biochemical parameters, consequently it inhibited apoptosis mediated by Aroclor‐1254 by downregulating aryl hydrocarbon receptor, p53 and apoptotic protein (Bax, caspase‐9, caspase‐3) and upregulating the antiapoptotic protein (Bcl‐2) expression patterns; thereby, quercetin reduces alteration in hepatocellular morphology. Thus quercetin exhibited hepatoprotective effect. © 2012 Wiley Periodicals, Inc. J BiochemMol Toxicol 26:522‐532, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21466 相似文献
17.
生殖健康是人口与健康领域的重要议题。作为全球最常见的呼吸道疾病哮喘会影响男性生殖功能,但相关机制鲜有报道。本文研究了黄酮类化合物黄芩苷(baicalin, BA)对哮喘小鼠睾丸损伤的干预作用及相关机制。选择雄性BALB/c小鼠随机分为对照组(CK组)、卵清蛋白(ovalbumin, OVA)致敏的哮喘组(OVA组)和黄芩苷干预哮喘组(OVA+BA组)。结果发现,3组小鼠体重无明显差异。OVA组小鼠睾丸系数和精子数量显著降低(P<0.05),精子畸形率显著增加(P<0.05);黄芩苷干预组小鼠睾丸系数显著增加(P<0.05),精子畸形率显著降低(P<0.05)。HE染色观察到OVA组小鼠睾丸组织生精小管结构损伤,精子发生异常,生精细胞减少,Johnson得分显著降低;BA干预组生精小管直径及生精上皮细胞高度显著增加,生精小管基膜结构较完整,Johnson得分显著提高(P<0.05);试剂盒法检测氧化还原指标发现,OVA组睾丸组织过氧化氢(H2O2)和丙二醛(MDA)含量显著增加(P<0.05),总超氧化物歧化... 相似文献
18.
Christoph Ruckenstuhl Sabrina Büttner Didac Carmona-Gutierrez Tobias Eisenberg Guido Kroemer Stephan J. Sigrist Kai-Uwe Fr?hlich Frank Madeo 《PloS one》2009,4(2)
Background
Otto Warburg observed that cancer cells are often characterized by intense glycolysis in the presence of oxygen and a concomitant decrease in mitochondrial respiration. Research has mainly focused on a possible connection between increased glycolysis and tumor development whereas decreased respiration has largely been left unattended. Therefore, a causal relation between decreased respiration and tumorigenesis has not been demonstrated.Methodology/Principal Findings
For this purpose, colonies of Saccharomyces cerevisiae, which is suitable for manipulation of mitochondrial respiration and shows mitochondria-mediated cell death, were used as a model. Repression of respiration as well as ROS-scavenging via glutathione inhibited apoptosis and conferred a survival advantage during seeding and early development of this fast proliferating solid cell population. In contrast, enhancement of respiration triggered cell death.Conclusion/Significance
Thus, the Warburg effect might directly contribute to the initiation of cancer formation - not only by enhanced glycolysis - but also via decreased respiration in the presence of oxygen, which suppresses apoptosis. 相似文献19.
为了探讨力竭运动诱导的氧化应激反应对大鼠红细胞Band3蛋白的影响,该文以大鼠跑步运动为模型,对三种不同运动条件下(静坐组、适度运动组和力竭运动组)大鼠红细胞抗氧化能力和氧化损伤程度进行了检测,并对氧化应激反应诱导的红细胞膜Band3蛋白表达和分布情况及其调控的阴离子通道活性进行了分析。结果表明:力竭运动条件下大鼠红细胞受到严重的氧化应激损伤,红细胞内抗氧化能力下降;导致膜Band3蛋白巯基交联为主的蛋白聚簇化反应及其阴离子转运能力的下降。Band3蛋白的损伤将进一步诱导红细胞携氧和变形能力的下降,成为运动相关疾病的潜在致病因素。 相似文献
20.
Masoud Alirezaei Gholamali Jelodar Zeynab Ghayemi 《International journal of peptide research and therapeutics》2012,18(3):239-247
Oxidative stress is one of the factors associated with decline in fertility and betaine has been shown to bear antioxidant and methyl donor properties in our recent studies. Thus, we designed the present study to examine antioxidant and methyl donor abilities of betaine in oxidative stress induced by ethanol in the rat testes. The adult male Sprague-Dawley rats were divided into four experimental groups and treated daily for 2?months as follows: control, ethanol (4?g/kg, orally), betaine (1.5?% of total diet, orally), and betaine plus ethanol (betaine, 1.5?% of total diet and after 120?min, ethanol 4?g/kg). Sperm motility and concentration significantly increased in betaine group when compared to the ethanol?Ctreated rats. The main antioxidant enzyme (GPx) activity significantly increased (in order compensatory) in ethanol-treated rats when compared to betaine group while, antiperoxidative enzyme (CAT) activity significantly increased in betaine plus ethanol group as compared to ethanol-treated rats. Total homocysteine (tHcy) and TBARS concentration (as a lipid peroxidation marker) also significantly decreased in betaine and betaine plus ethanol groups as compared to ethanol-treated rats. Overall, methyl donor and antioxidant properties of betaine are promising and reduce the elevated tHcy and TBARS concentrations in betaine plus ethanol group. Therefore, betaine might be used as a potential therapy in hyperhomocysteinemia and oxidative stress induced by ethanol in alcoholism. 相似文献