首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The rate of inactivation of crystalline trypsin solutions and the nature of the products formed during the inactivation at various pH at temperatures below 37°C. have been studied. 2. The inactivation may be reversible or irreversible. Reversible inactivation is accompanied by the formation of reversibly denatured protein. This denatured protein exists in equilibrium with the native active protein and the equilibrium is shifted towards the denatured form by raising the temperature or by increasing the alkalinity. The decrease in the fraction of active enzyme present (due to the formation of this reversibly denatured protein) as the pH is increased from 8.0 to 12.0 accounts for the decrease in the rate of digestion of proteins by trypsin in this range of pH. 3. The loss of activity at high temperatures or in alkaline solutions, just described, is very rapid and is completely reversible for a short time only. If the solutions are allowed to stand the loss in activity becomes gradually irreversible and is accompanied by the appearance of various reaction products the nature of which depends upon the temperature and pH of the solution. 4. On the acid side of pH 2.0 the trypsin protein is changed to an inactive form which is irreversibly denatured by heat. The course of the reaction in this range is monomolecular and its velocity increases as the acidity increases. 5. From pH 2.0 to 9.0 trypsin protein is slowly hydrolyzed. The course of the inactivation in this range of pH is bimolecular and its velocity increases as the alkalinity increases to pH 10.0 and then decreases. As a result of these two reactions there is a point of maximum stability at about pH 2.3. 6. On the alkaline side of pH 13.0 the reaction is similar to that in strong acid solution and consists in the formation of inactive protein. The course of the reaction is monomolecular and the velocity increases with increasing alkalinity. From pH 9.0 to 12.0 some hydrolysis takes place and some inactive protein is formed and the course of the reaction is represented by the sum of a bi- and monomolecular reaction. The rate of hydrolysis decreases as the solution becomes more alkaline than pH 10.0 while the rate of formation of inactive protein increases so that there is a second point at about pH 13.0 at which the rate of inactivation is a minimum. In general the decrease in activity under all these conditions is proportional to the decrease in the concentration of the trypsin protein. Equations have been derived which agree quantitatively with the various inactivation experiments.  相似文献   

2.
1. If dilute solutions of purified trypsin of low salt concentration at pH from 1 to 7 are heated to 100°C. for 1 to 5 minutes and then cooled to 20°C. there is no loss of activity or formation of denatured protein. If the hot trypsin solution is added directly to cold salt solution, on the other hand, all the protein precipitates and the supernatant solution is inactive. 2. The per cent of the total protein and activity present in the soluble form decreases from 100 per cent to zero as the temperature is raised from 20°C. to 60°C. and increases again from zero to 100 per cent as the solution is cooled from 60°C. to 20°C. The per cent of the total protein present in the soluble (native) form at any one temperature is nearly the same whether the temperature is reached from above or below. 3. If trypsin solutions at pH 7 are heated for increasing lengths of time at various temperatures and analyzed for total activity and total protein nitrogen after cooling, and for soluble activity and soluble (native) protein nitrogen, it is found that the soluble activity and soluble protein nitrogen decrease more and more rapidly as the temperature is raised, in agreement with the usual effects of temperature on the denaturation of protein. The total protein and total activity, on the other hand, decrease more and more rapidly up to about 70°C. but as the temperature is raised above this there is less rapid change in the total protein or total activity and at 92°C. the solutions are much more stable than at 42°C. 4. Casein and peptone are not digested by trypsin at 100°C. but when this digestion mixture is cooled to 35°C. rapid digestion occurs. A solution of trypsin at 100°C. added to peptone solution at zero degree digests the peptone much less rapidly than it does if the trypsin solution is allowed to cool slowly before adding it to the peptone solution. 5. The precipitate of insoluble protein obtained from adding hot trypsin solutions to cold salt solutions contains the S-S groups in free form as is usual for denatured protein. 6. The results show that there is an equilibrium between native and denatured trypsin protein the extent of which is determined by the temperature. Above 60°C. the protein is in the denatured and inactive form and below 20°C. it is in the native and active form. The equilibrium is attained rapidly. The results also show that the formation of denatured protein is proportional to the loss in activity and that the re-formation of native protein is proportional to the recovery of activity of the enzyme. This is strong evidence for the conclusion that the proteolytic activity of the preparation is a property of the native protein molecule.  相似文献   

3.
1. A study has been made of the equilibrium existing between trypsin and the substances formed in the digestion of proteins which inhibit its action. 2. This substance could not be obtained by the hydrolysis of the proteins by acid or alkali. It is dialyzable. 3. The equilibrium between this substance (inhibitor) and trypsin is found to agree with the equation, trypsin + inhibitor ⇌ trypsin-inhibitor The equilibrium is reached instantaneously and is independent of the substrate concentration. If it be further assumed that the rate of hydrolysis is proportional to the concentration of the free trypsin and that the equilibrium conforms to the law of mass action, it is possible to calculate the experimental results by the application of the law of mass action. 4. The equilibrium has been studied by varying (a) the concentration of the inhibiting substance, (b) the concentration of trypsin, (c) the concentration of gelatin, and (d) the concentration of trypsin and inhibitor (the relative concentration of the two remaining the same). In all cases the results agree quantitatively with those predicted by the law of mass action. 5. It was found that the percentage retarding effect of the inhibiting substance on the rate of hydrolysis is independent of the hydrogen ion concentration between pH 6.3 and 10.0. 6. The fact that the experimental results agree with the mechanism outlined under 3, is contrary to the assumption that any appreciable amount of trypsin is combined with the gelatin at any one time; i.e., the velocity of the hydrolysis must depend on the time required for such a compound to form rather than for it to decompose. 7. The experiments may be considered as experimental proof of the validity of Arrhenius'' explanation of Schütz''s rule as applied to trypsin digestion. 8. Inactivated trypsin does not enter into the equilibrium.  相似文献   

4.
1. The retarding effect of plasma on the action of trypsin can be measured quantitatively. 2. The nature of the reaction involved in effecting the retardation has been subjected to an experimental study. 3. Evidence is presented which indicates that the equilibrium between the inhibitive agent and trypsin is reached practically instantaneously and is rapidly and completely reversible. 4. This equilibrium has been studied by experiments in which we have observed (1) the effect of adding increasing amounts of plasma to a constant amount of trypsin, (2) the effect of varying the amount of trypsin while the plasma was constant, (3) the effect of dilution on the trypsin-plasma mixture. 5. The results of these experiments are discussed and it is stated that they are in quantitative agreement with the law of mass action. 6. An equation was found which fits the curves for the experiments mentioned in (4). This equation was developed from the assumption that 1 molecule of trypsin combined with 1 molecule of inhibitor to form 1 molecule of trypsin-inhibitor compound. The agreement between the results calculated by this equation and the observed results is satisfactory. It is pointed out that the equation contains two arbitrary constants and the bearing this fact may have on the calculated results is discussed. 7. We conclude from the results of our study that we have adduced evidence which suggests the following statement regarding the so called "antitryptic" property of blood. The inhibitive agent and trypsin combine to form an inactive but dissociable compound. The reaction in equilibrium is expressed by the equation Trypsin + inhibitor ⇌ trypsin-inhibitor The conditions of equilibrium are apparently governed by the law of mass action. The behavior of the equilibrium is therefore similar to the behavior of other equilibria between different inhibitive agents and enzymes discussed in the paper.  相似文献   

5.
EFFECT OF TRYPSIN ON LIVER MICROSOMES   总被引:3,自引:3,他引:0       下载免费PDF全文
The effect of trypsin on the morphology of the rat liver microsomal fraction isolated by differential centrifugation has been investigated. The microsomes were incubated at 37°C and centrifuged thereafter under the conditions of their initial isolation. The trypsin-treated microsomes and the untreated controls were fixed in unbuffered osmium tetroxide and embedded first in gelose and then in methacrylate. In the trypsin-treated microsomes, there was a removal of the ribosomes from the rough vesicles. Parallel chemical determinations showed that the total nitrogen and total phosphorus of the pellet were lowered. Particles, densely stained with phosphotungstic acid (PTA) and homogeneous in appearance, were found within microsome smooth vesicles in a fluffy layer which collects on the top of the microsome pellet. The morphology of these PTA-stained particles remained unchanged after incubation with trypsin.  相似文献   

6.
1. The Donnan equilibrium furnishes a test for the ionic nature of any diffusible substance, since the ratio of the concentration of any ion on the two sides of a membrane must be equal to the ratio of the concentrations of any other ion of the same sign and valence, whereas a non-ionic substance would be equally distributed on both sides. 2. The distribution of trypsin inside and outside of gelatin particles has been compared to the distribution of hydrogen and chloride ions under the same conditions. 3. The ratio of the trypsin concentration in the gelatin to the concentration in the outside liquid is equal to the ratio of the hydrogen ion under the same conditions and to the reciprocal of the chloride ion ratio. 4. This result was obtained between pH 2.0 and 10.2. At pH 10.2 the trypsin is equally distributed and on the akaline side of 10.2 the ratio is directly equal to the chloride ratio. 5. Trypsin is therefore a positive monovalent ion in solutions of pH 10 to 2. It is probably isoelectric at 10.2 and a monovalent negative ion on the alkaline side of 10.2 6. Trypsin must also be a strong base since there is no evidence of any undissociated form on the acid side of pH 10.2.  相似文献   

7.
1. A powerful kinase which changes trypsinogen to trypsin was found to be present in the synthetic liquid culture medium of a mold of the genus Penicillium. 2. The concentration of kinase in the medium is increased gradually during the growth of the mold organism and continues to increase for some time even after the mold has ceased growing. 3. Mold kinase transforms trypsinogen to trypsin only in an acid medium. It differs thus from enterokinase and trypsin which activate trypsinogen best in a slightly alkaline medium. 4. The action of the mold kinase in the process of transformation of trypsinogen is that of a typical enzyme. The process follows the course of a catalytic unimolecular reaction, the rate of formation of a definite amount of trypsin being proportional to the concentration of kinase added. The ultimate amount of trypsin formed, however, is independent of the concentration of kinase used. 5. The formation of trypsin from trypsinogen by mold kinase is not accompanied by any measurable loss of protein. 6. The temperature coefficient of formation of trypsin from trypsinogen by mold kinase varies from Q 5–15 = 1.70 to Q 25–30 = 1.25 with a corresponding variation in the value of µ from 8100 to 4250. 7. Trypsin formed from trypsinogen by means of mold kinase is identical in crystalline form with the crystalline trypsin obtained by spontaneous autocatalytic activation of trypsinogen at pH 8.0. The two products have within the experimental error the same solubility and specific activity. A solution saturated with the crystals of either one of the trypsin preparations does not show any increase in protein concentration or activity when crystals of the other trypsin preparation are added. 8. The Penicillium mold kinase has a slight activating effect on chymo-trypsinogen the rate being only 1–2 per cent of that of trypsinogen. The activation, as in the case of trypsinogen, takes place only in an acid medium. 9. Mold kinase is rapidly destroyed when brought to pH 6.5 or higher, and also when heated to 70°C. In the temperature range of 50–60°C. the inactivation of kinase follows a unimolecular course with a temperature coefficient of Q 10 = 12.1 and µ = 53,500. The molecular weight of mold kinase, as determined by diffusion, is 40,000.  相似文献   

8.
The formation from hemoglobin of split products not precipitable by trichloracetic acid is taken as a measure of tryptic activity. The split products are estimated colorimetrically. Many measurements of tryptic activity can be made in a short time and different samples of hemoglobin yield the same results.  相似文献   

9.
A study has been made of the general properties of crystalline soybean trypsin inhibitor. The soy inhibitor is a stable protein of the globulin type of a molecular weight of about 24,000. Its isoelectric point is at pH 4.5. It inhibits the proteolytic action approximately of an equal weight of crystalline trypsin by combining with trypsin to form a stable compound. Chymotrypsin is only slightly inhibited by soy inhibitor. The reaction between chymotrypsin and the soy inhibitor consists in the formation of a reversibly dissociable compound. The inhibitor has no effect on pepsin. The inhibiting action of the soybean inhibitor is associated with the native state of the protein molecule. Denaturation of the soy protein by heat or acid or alkali brings about a proportional decrease in its inhibiting action on trypsin. Reversal of denaturation results in a proportional gain in the inhibiting activity. Crystalline soy protein when denatured is readily digestible by pepsin, and less readily by chymotrypsin and by trypsin. Methods are given for measuring trypsin and inhibitor activity and also protein concentration with the aid of spectrophotometric density measurements at 280 mµ.  相似文献   

10.
1. The rate of inactivation of purified trypsin solutions approximates closely that demanded by the monomolecular formula. The more carefully the solution is purified the closer the agreement with the formula. 2. The products formed by the action of trypsin on proteins renders the trypsin more stable. Gelatin and glycine have no effect. 3. The rate of inactivation of trypsin solutions containing these products does not follow the course of a monomolecular reaction but becomes progressively slower than the predicted rate. 4. The protective action of these substances is much greater if they are added all at once at the beginning of the experiment than if they are added at intervals. These observations may be quantitatively accounted for by the hypothesis that a compound is formed between trypsin and the inhibiting substance which is stable as well as inactive, and that the rate of decomposition depends on the amount of uncombined trypsin present. 5. Trypsin is most stable at a pH of 5 and is rapidly destroyed in strongly acid or alkaline solution. 6. The protective effect of the inhibiting substances is small on the acid side of pH 5, increases from pH 5 to 7, and then remains approximately constant.  相似文献   

11.
Base-pair probability profiles of RNA secondary structures   总被引:7,自引:0,他引:7  
Dynamic programming algorithms are able to predict optimal andsuboptimal secondary structures of RNA. These suboptimal oralternative secondary structures are important for the biologicalfunction of RNA. The distribution of secondary structures presentin solution is governed by the thermodynamic equilibrium betweenthe different structures. An algorithm is presented which approximatesthe total partition function by a Boltzmann–weighted summationof optimal and suboptimal secondary structures at several temperatures.A clear representation of the equilibrium distribution of secondarystructures is derived from a two-dimensional bonding matrixwith base–pairing probability as the third dimension.The temperature dependence of the equilibrium distribution givesthe denaturation behavior of the nucleic acid, which may becompared to experimental optical denaturation curves after correctionfor the hypochromicities of the different base-pairs. Similarly,temperature-induced mobility changes detected in temperature-gradientgel electrophoresis of nucleic acids may be interpreted on thebasis of the temperature dependence of the equilibrium distribution.Results are illustrated for natural circular and synthetic linearpotato spindle tuber viroid RNA respectively, and are comparedto experimental data.  相似文献   

12.
New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance.

The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu+2) introduced p-aminobenzamidine (pABA- Cu+2: guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu+2 preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (Kcat, Km, Kcat/Km), optimum pH and temperature of the trypsin-pABA-Cu+2 complex was also investigated.  相似文献   

13.
A method is described for isolating a crystalline protein of high tryptic activity from beef pancreas. The protein has constant proteolytic activity and optical activity under various conditions and no indication of further fractionation could be obtained. The loss in activity corresponds to the decrease in native protein when the protein is denatured by heat, digested by pepsin, or hydrolyzed in dilute alkali. The enzyme digests casein, gelatin, edestin, and denatured hemoglobin, but not native hemoglobin. It accelerates the coagulation of blood but has little effect on the clotting of milk. It digests peptone prepared by the action of pepsin on casein, edestin or gelatin. The extent of the digestion of gelatin caused by this enzyme is the same as that caused by crystalline pepsin and is approximately equivalent to tripling the number of carboxyl groups present in the solution. The activity of the preparation is not increased by enterokinase. The molecular weight by osmotic pressure measure is about 34,000. The diffusion coefficient in ½ saturated magnesium sulfate at 6°C. is 0.020 ±0.001 cm.2 per day, corresponding to a molecular radius of 2.6 x 10–7 cm. The isoelectric point is probably between pH 7.0 and pH 8.0. The optimum pH for the digestion of casein is from 8.0–9.0. The optimum stability is at pH 1.8.  相似文献   

14.
The thermal stability and folding dynamics of polyglutamic acid were studied by equilibrium circular dichroism (CD), Fourier-transform infrared (FTIR), and time-resolved temperature-jump infrared (IR) spectroscopy. Polyglutamic acid (PGA) forms α-helical peptides in aqueous solution and is an ideal model system to study the helix–coil transition. Melting curves were monitored with CD and FTIR as a function of pD. At low pD, PGA aggregates at temperatures above 323 K, whereas at pD >5, unfolding and refolding are reversible. At pD 5.4, a helix–coil transition occurs with a transition temperature T m of 307 K. At slightly higher pD of 6.2, the peptide conformation is already in a coil structure and only small conformational changes occur upon heating. We determined the equilibrium constant for the reversible helix–coil transition at pD 5.4. The dynamics of this transition was measured at single IR wavelengths after a nanosecond laser-excited temperature jump of ∆T ~ 10 K. Relaxation constants decreased with increasing peptide temperature. Folding and unfolding rates as well as activation energies were extracted based on a two-state model. Our study shows how equilibrium and time-resolved infrared spectroscopic data can be combined to characterize a structural transition and to analyze folding mechanisms.  相似文献   

15.
Solid-liquid phase behavior was investigated for binary fatty acid mixtures composed of oleic acid (OA; cis-9-octadecenoic acid) and saturated fatty acids, lauric acid (LA; dodecanoic acid), myristic acid (MA; tetradecanoic acid), and palmitic acid (PA; hexadecanoic acid), by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). When the mixture was heated immediately after the solidification from the melt, the heat effect due to the gamma-to-alpha transformation of OA varied depending on the composition of the mixture. However, the mixture subjected to an annealing at the temperature slightly below the melting temperature provided the transformation at constant temperature which corresponds to the gamma-to-alpha transformation temperature of pure OA. This suggests that a solid phase formed by cooling of the melt of the mixture is not in an equilibrium state, but it relaxes to a stable solid during the annealing process. The T-X phase diagrams of these mixtures constructed from the DSC measurements demonstrate that the two fatty acid species are completely immiscible in a solid phase regardless of the type of polymorphs of OA, alpha- or gamma-form. According to a thermodynamic analysis of liquidus line basing on the regular solution model for the melt, the non-ideality of mixing tends to increase with the decrease in the acyl chain length of the saturated fatty acid, although the mixing is rather close to ideal.  相似文献   

16.
One of the building blocks of cephalosporin antibiotics is 7-amino-deacetoxycephalosporanic acid (7-ADCA). It is currently produced from penicillin G using an elaborate chemical ring-expansion step followed by an enzyme-catalyzed hydrolysis. However, 7-ADCA-like components can also be produced by direct fermentation. This is of scientific and economic interest because the elaborate ring-expansion step is performed within the microorganism. In this article, the hydrolysis of the fermentation product adipyl-7-ADCA is studied. Adipyl-7-ADCA can be hydrolyzed in an equilibrium reaction to adipic acid and 7-ADCA using glutaryl-acylase. The equilibrium reaction yield is described as a function of pH, temperature, and initial adipyl-7-ADCA concentration. Reaction rate equations were derived for adipyl-7-ADCA-hydrolysis using three (pH-independent) reaction rate constants and the apparent equilibrium constant. The reaction rate constants were calculated from experimental data. Based on the equilibrium position and reaction rate equations the hydrolysis reaction was optimized and standard reactor configurations were evaluated. It was found that equilibrium yields are high at high pH, high temperature and low-initial adipyl-7-ADCA concentration. The course of the reaction could be described well as a function of pH (7-9), temperature (20-40 degrees C) and concentration using the reaction rate equations. It was shown that a series of CSTR's is the best alternative for the process.  相似文献   

17.
The diffusion coefficient of crystalline trypsin in 0.5 saturated magnesium sulfate at 5°C. is 0.020 ±0.001 cm.2 per day, corresponding to a molecular radius of 2.6 x 10–7 cm. The rate of diffusion of the proteolytic activity is the same as that of the protein nitrogen, indicating that these two properties are held together in chemical combination and not in the form of an adsorption complex.  相似文献   

18.
1. A new technique for studying the progressive inactivation of thrombin is described. 2. Thrombin inactivation follows the kinetics of a first order reaction. 3. The rate constant of the inactivation reaction increases with temperature and pH (5.0 → 10.0), and also with the presence of crystalline trypsin, or serum. The rate varies for different thrombin preparations, even under the same experimental conditions. 4. The temperature characteristics of the reaction indicate that thrombin is associated with protein. 5. Thrombin preparations are most stable at pH 4 to 5, even when trypsin or serum is added. 6. The progressive inactivation is believed to be due to two mechanisms: (1) a major effect, thought to be the action of a "serum-tryptase," which is usually present in the thrombin preparations, and (2) a minor effect, probably attributable to denaturation of thrombin-protein. 7. Sources of the thrombinolytic factor (serum-tryptase) and its implications in the general theory and practical problems of blood coagulation and antithrombic action are briefly discussed.  相似文献   

19.
Representation of phase equilibrium behavior of antibiotics.   总被引:1,自引:0,他引:1  
The phase equilibrium behavior of biomolecules is important both in understanding the partition mechanisms and in the design and optimization of downstream recovery processes. Chen et al. (1989) proposed a molecular thermodynamic framework that successfully represents the liquid-solid equilibrium behavior of amino acids and small peptides as functions of temperature, ionic strength, solvent compositions, and pH. Based on this theoretical framework, this paper presents recent results in representing the liquid-solid equilibrium behavior (solubilities) and the liquid-liquid equilibrium behavior (phase partitioning) of beta-lactam antibiotics, which are amino acid derivatives and important chemotherapeutic agents.  相似文献   

20.
This work reports experimental equilibrium data for the esterification of pure oleic acid and a fatty acid mixture with ethanol, using an immobilized Candida antarctica B lipase as catalyst. Reactions are performed in a solvent-free system, containing a mixture of substrates and different amounts of distilled water. According to the initial amount of water and the extent of the reaction, one or two liquid phases are present. Therefore, when the equilibrium is achieved, the liquid–liquid and chemical reaction equilibria have to be simultaneously satisfied.

Several reports dealing with enzymatic reactions performed in two-phase systems have found that the value of the reaction equilibrium constant calculated from overall experimental concentrations varies not only with temperature but also with substrate ratio and water content. Although this approach is a valuable way to explore equilibrium shifts in biphasic systems, it is limited to ideal systems with constant partition coefficients. The aim of this work is to consider the biphasic nature of the reactive mixture through a computational procedure that simultaneously takes into account liquid–liquid and reaction equilibria. This approach enables the determination of a classical temperature-dependent thermodynamic equilibrium constant, which accurately fits experimental equilibrium conversions over a wide range of operating conditions.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号