首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The complete inactivation of antistaphylococcal phage by HgCl2 (2.8 per cent for 216 hours) can be reversed by precipitation of Hg++ with restoration of the phage to its original titre. 2. This behavior seems more compatible with the known properties of certain enzymes than with those of living protoplasm.  相似文献   

2.
The above data relating to the reaction between 16 hour cultures of S. aureus and antistaphylococcus bacteriophage in nutrient broth of pH 7.6 at 36°C. and with mechanical shaking to maintain a uniform B suspension, bring out the following points: (a) B growth in P-B mixtures does not differ from growth in controls without P except in the case of a very high initial P/B ratio as noted below. There is no evidence that lytic destruction of B begins shortly after mixing P and B nor that B growth is stimulated by P, for the B growth curves in the presence of ordinary [P]''s and in controls are identical. Only at the sudden onset of the rapid lytic process does the B curve of a P-B mixture deviate from the control curve. (b) B growth is an essential conditioning factor for P formation. (c) Both B growth and P production exhibit short lags. During this time P diffuses into or becomes adsorbed to B so rapidly that by the end of the lag period only 10 to 30 per cent of the total P present is extracellular, the remainder being associated with the B. (d) During the logarithmic B growth phase, P formation is also logarithmic but proceeds at a much faster rate. That is, d P/d t is proportional to a power of d B/d t. Consequently the statement that each time a B divides a certain amount of P is formed is not correct. (e) As B growth enters the phase of positive acceleration equilibrium between the extracellular and intracellular P fractions becomes established and is maintained up to the onset of lysis, extracellular [P] representing a small constant percentage of total [P]. The distribution of P on a constant percentage basis suggests the manner in which a relatively simple chemical compound would be distributed and is not at all typical of the distribution one would expect if P were a complex organized parasite. (f) When the value of log P/B = 2.1 lysis begins. Obviously, this limiting value for any initial [B] is reached sooner the higher the initial [P]. When log P/B at the time of mixing P and B is already 2.1 or greater, there is no growth of B and lysis soon occurs. (g) While there is good evidence that lysis is brought about by the attainment of a particular [P] per B and not by a certain [P] per ml., it is not clear at this time which of the ratios intracellular P/B, extracellular P/B or total P/B is the major conditioning factor for B lysis. (h) Experimentally the maximal [P]''s of lysates made by mixing a constant initial [B] with widely varying Po''s fall within a relatively narrow range. This fact is explained by the large value of d log P/d t as compared to d log B/d t. That is, the loci of points at which log P = 2.1 + log B (maxima-lysis begins) on the curves of log P against t originating in various [Po]''s will lie at a nearly constant level above the abscissa. Because of this same relationship the maximal [P]''s of such a series will be in the reverse order of magnitude of the Po''s, i.e., the larger the Po the smaller will be the maximal [P] attained during the reaction (cf. Fig, 16). (i) The lytic destruction of B is logarithmic with time, in this respect being similar to most death rate processes. The value -d log B/d t for a particular initial [B] is constant for various initial values of [P]. There is good evidence that cells need not be growing in order to undergo lysis. (j) During B lysis a considerable percentage of the total maximal P formed is destroyed, the chief loss probably occurring in the intracellular fraction. The major portion (70 to 90 per cent) of the final P present after the completion of bacteriophagy is set free during the brief phase of bacterial dissolution. (k) When the entire process of bacteriophagy is completed the lysates are left with certain [P]''s determined by the foregone P-B reaction. The destruction of P during lysis is sufficiently regular to maintain the relationship established at the maximal [P]''s. Therefore the final [P]''s have the same points in common that were noted in "h" as applying to the maximal [P]''s. That is, they all are grouped within a narrow range of [P] values, those having been made with high Po''s being of lower titre than those made with low initial [P]''s. (1) There is a significant difference in the temperature coefficients of P and B formation. Further, the temperature coefficients of P and B destruction during lysis differ in almost the same ratio. Consequently, while all experimental evidence postulates B growth as an essential conditioning factor for P formation, the temperature coefficient data suggest that the two processes are basically separate reactions. A similar interpretation holds in the case of B dissolution and P inactivation. (m) The major events in the complete process of "bacteriophagy" are mathematically predictable. The [B] at which lysis occurs under certain standard conditions for given values of Bo and Po may be calculated from the equation: See PDF for Equation Substitution of this value for log B in the equation: See PDF for Equation gives satisfactory agreement with observed values for t (lysis). (n) The kinetic analysis of the P-B reaction predicts that the values of log Po plotted against t (lysis) for a constant Bo will give a straight line. This plot is employed in a method for the quantitative estimation of P described in an earlier paper on the basis of experimental observation alone. Its use is made more rational by the facts given above.  相似文献   

3.
A study of the oxygen consumed per lumen of luminescence during oxidation of Cypridina luciferin in presence of luciferase, gives 11.4 x 10–5 gm. oxygen per lumen or 88 molecules per quantum of λ = 0.48µ, the maximum in the Cypridina luminescence spectrum. For reasons given in the text, the actual value is probably somewhat less than this, perhaps of the order of 6.48 x 10–5 gm. per lumen or 50 molecules of oxygen and 100 molecules of luciferin per quantum. It is quite certain that more than 1 molecule per quantum must react. On the basis of a reaction of the type: luciferin + 1/2 O2 = oxyluciferin + H2O + 54 Cal., it is calculated that the total efficiency of the luminescent process, energy in luminescence/heat of reaction, is about 1 per cent; and that a luciferin solution containing 4 per cent of dried Cypridina material should rise in temperature about 0.001°C. during luminescence, and contain luciferin in approximately 0.00002 molecular concentration.  相似文献   

4.
1. The effects of a number of respiratory inhibiting agents on the cell division of fertilized eggs of Arbacia punctulata have been determined. For eggs initially exposed to the reagents at 30 minutes after fertilization at 20°C., the levels of oxygen consumption prevailing in the minimum concentrations of reagents which produced complete cleavage block were (as percentages of the control): In 0.4 per cent O2-99.6 per cent N2, 32; in 0.7 per cent O2-99.3 per cent CO, 32; in 1.6 x 10–4 M potassium cyanide, 34; in 1 x 10–3 M phenylurethane, 70; in 4 x 10–3 M 5-isoamyl-5-ethyl barbituric acid, 20; in 3 x 10–4 M iodoacetic acid, 53. 2. The carbon monoxide inhibition of oxygen consumption and cell division was reversed by light. The percentage inhibition of oxygen consumption by carbon monoxide in the dark is described by the usual mass action equation with K, the inhibition constant, equal to approximately 60, as compared to values of 5 to 10 for yeast and muscle. In 20 per cent O2-80 per cent CO in the dark there was a slight stimulation of oxygen consumption, averaging 20 per cent. 3. Spectroscopic examination of fertilized and unfertilized Arbacia eggs reduced by hydrosulfite revealed no cytochrome bands. The thickness and density of the egg suspension was such as to indicate that, if cytochrome is present at all, the amount in Arbacia eggs is extremely small as compared to that in other tissues having a comparable rate of oxygen consumption. 4. Three reagents poisoning copper catalyses, potassium dithio-oxalate (10–2 M), diphenylthiocarbazone (10–4 M), and isonitrosoacetophenone (2 x 10–3 M) produced no inhibition of division of fertilized Arbacia eggs. 5. These results indicate that the respiratory processes required to support division in the Arbacia egg may perhaps differ in certain essential steps from the principal respiratory processes in yeast and muscle.  相似文献   

5.
The above data relating to the antistaphylococcus phage and single strain of S. aureus with which previous papers have been concerned (9, 10, 11, 12), bring out the following points. (a) For live, resting, susceptible B suspended in broth as well as for B in a P-B mixture during the logarithmic phases of B growth and P formation, P is distributed in a manner typical of numerous materials soluble in both phases of a two phase system, i.e., distribution proceeds in accordance with the equation Cb/Ca = K where Cb = extracellular P/ml. of broth and Ca = intracellular P/ml. of B. The combination is quantitatively reversible. (b) With heat-killed, susceptible B, P distribution is of the adsorptive type, expressible in the form of the adsorption isotherm equation a = kC 1/n. The average value of 1/n is 0.80 in agreement with the results of von Angerer (2). Under ordinary conditions dead B take up much more P than do live B, the reaction proceeding to > 99 per cent completion. The combination of P with dead B is not demonstrably reversible and with high initial P/B ratios saturation of B with P is effected. Bacteria killed at 65°C., 80°C. and 100°C. show no differences in adsorptive ability. (c) The rates at which live, resting, susceptible B and heat-killed, susceptible B remove P from solution do not differ significantly. Velocity constants of the process calculated from See PDF for Equation agree satisfactorily. It is shown that the time interval consumed is concerned with an actual reaction between P and B and not with diffusion of P through the broth to B. (d) P determinations have been found to serve as satisfactory indicators for B growth in P-B mixtures where [B] is to be maintained at a constant level. Very small increments in [B] give rise to measurable increases in P by virtue of the fact that dP/dt is proportional to a power of the rate dB/dt (9). (e) Similarly [P] estimations will detect death of B cells in P-live B suspensions. Dead B take up large amounts of P irreversibly; such P cannot function in the titration and the result is a sharp drop in [P] of controls.  相似文献   

6.
1. An optimum of environmental temperature is to be expected for the utilization of food energy in warm blooded animals if their food intake is determined by their appetite. 2. Baby chicks were kept in groups of five chicks in a climatic cabinet at environmental temperatures of 21°, 27°, 32°, 38°, and 40°C. during the period of 6 to 15 days of age. The intake of qualitatively complete food was determined by their appetite. Food intake, excretion, and respiratory exchange were measured. Control chicks from the same hatch as the experimental groups were raised in a brooder and were given the same food as the experimental chicks. The basal metabolism of each experimental group was determined from 24 to 36 hours without food at the age of 16 days. 3. The daily rate of growth increased with decreasing environmental temperature from 2.74 gm. at 40°C. to 4.88 gm. at 21°C. This was 4.2 to 6.5 per cent of their body weight. 4. The amount of food consumed increased in proportion to the decrease in temperature. 5. The availability of the food, used for birds instead of the digestibility and defined as See PDF for Structure showed an optimum at 38°C. 6. The CO2 production increased from 2.95 liters CO2 per day per chick at 40°C. to 6.25 liters at 21°C. Per unit of the 3/4 power of the body weight, 23.0 liters CO2 per kilo3/4 was produced at 40°C. and 43.4 liters per kilo3/4 at 21°C. The CO2 production per unit of 3/4 power of the weight increased at an average rate of approximately 1 per cent per day increase in age. The R.Q. was, on the average, 1.04 during the day and 0.92 during the night. 7. The net energy is calculated on the basis of C and N balances. A maximum of 11.8 Cal. net energy per chick per day was found at 32°C. At 21°C. only 6.9 Cal. net per day per chick was produced and at 40°C. an average of 6.7 Cal. 8. The composition of the gained body substance changed according to the environmental temperature. The protein stored per gram increase in body weight varied from 0.217 to 0.266 gm. protein and seemed unrelated to the temperature. The amount of fat per gram gain in weight dropped from a maximum of 0.153 gm. at 32°C. to 0.012 gm. at 21°C. and an average of 0.107 gm. at 40°C. The energy content per gram of gain in weight had its maximum of 2.95 Cal. per gm. at 38°C. and its minimum of 1.41 Cal. per gm. at 21°C. at which temperature the largest amount of water (0.763 gm. per gm. increase in body weight) was stored. 9. The basal metabolism increased from an average of 60 Cal. per kilo3/4 at an environmental temperature of 40°C. to 128 Cal. per kilo3/4 at 21°C. No indication of a critical temperature was found. 10. The partial efficiency, i.e. the increase in net energy per unit of the corresponding increase in food energy, seemed dependent on the environmental temperature, reaching a maximum of 72 per cent of the available energy at 38°C. and decreasing to 57 per cent at 21°C. and to an average of 60 per cent at 40°C. 11. The total efficiency, i.e. the total net energy produced per unit of food energy taken in, was maximum (34 per cent of the available energy) at 32°C., dropped to 16 per cent at 21°C., and to an average of 29 per cent at 40°C.  相似文献   

7.
Methods are described for measuring the light emitted by an emulsion of luminous bacteria of given thickness, and calculating the light emitted by a single bacterium, measuring 1.1 x 2.2 micra, provided there is no absorption of light in the emulsion. At the same time, the oxygen consumed by a single bacterium was measured by recording the time for the bacteria to use up .9 of the oxygen dissolved in sea water from air (20 per cent oxygen). The luminescence intensity does not diminish until the oxygen concentration falls below 2 per cent, when the luminescence diminishes rapidly. Above 2 per cent oxygen (when the oxygen dissolving in sea water from pure oxygen at 760 mm. Hg pressure = 100 per cent) the bacteria use equal amounts of oxygen in equal times, while below 2 per cent oxygen it seems very likely that rate of oxygen absorption is proportional to oxygen concentration. By measuring the time for a tube of luminous bacteria of known concentration saturated with air (20 per cent oxygen) to begin to darken (2 per cent oxygen) we can calculate the oxygen absorbed by one bacterium per second. The bacteria per cc. are counted on a blood counting slide or by a centrifugal method, after measuring the volume of a single bacterium (1.695 x 10–12 cc.). Both methods gave results in good agreement with each other. The maximum value for the light from a single bacterium was 24 x 10–14 lumens or 1.9 x 10–14 candles. The maximum value for lumen-seconds per mg. of oxygen absorbed was 14. The average value for lumen-seconds per mg. O2 was 9.25. The maximum values were selected in calculating the efficiency of light production, since some of the bacteria counted may not be producing light, although they may still be using oxygen. The "diet" of the bacteria was 60 per cent glycerol and 40 per cent peptone. To oxidize this mixture each mg. of oxygen would yield 3.38 gm. calories or 14.1 watts per second. 1 lumen per watt is therefore produced by a normal bacterium which emits 14 lumen-seconds per mg. O2 absorbed. Since the maximum lumens per watt are 640, representing 100 per cent efficiency, the total luminous efficiency if .00156. As some of the oxygen is used in respiratory oxidation which may have nothing to do with luminescence, the luminescence efficiency must be higher than 1 lumen per watt. Experiments with KCN show that this substance may reduce the oxygen consumption to 1/20 of its former value while reducing the luminescence intensity only ¼. A partial separation of respiratory from luminescence oxidations is therefore effected by KCN, and our efficiency becomes 5 lumens per watt, or .0078. This is an over-all efficiency, based on the energy value of the "fuel" of the bacteria, regarded as a power plant for producing light. It compares very favorably with the 1.6 lumens per watt of a tungsten vacuum lamp or the 3.9 lumens per watt of a tungsten nitrogen lamp, if we correct the usual values for these illuminants, based on watts at the lamp terminals, for a 20 per cent efficiency of the power plant converting the energy of coal fuel into electric current. The specific luminous emission of the bacteria is 3.14 x 10–6 lumens per cm2. One bacterium absorbs 215,000 molecules of oxygen per second and emits 1,280 quanta of light at λmax = 510µµ. If we suppose that a molecule of oxygen uniting with luminous material gives rise to the emission of 1 quantum of light energy, only 1/168 of the oxygen absorbed is used in luminescence. On this basis the efficiency becomes 168 lumens per watt or 26.2 per cent.  相似文献   

8.
The possible role of Ca2+ as a second messenger mediating regulatory volume decrease (RVD) in osmotically swollen cells was investigated in murine neural cell lines (N1E-115 and NG108-15) by means of novel microspectrofluorimetric techniques that allow simultaneous measurement of changes in cell water volume and [Ca2+]i in single cells loaded with fura-2. [Ca2+]i was measured ratiometrically, whereas the volume change was determined at the intracellular isosbestic wavelength (358 nm). Independent volume measurements were done using calcein, a fluorescent probe insensitive to intracellular ions. When challenged with ∼40% hyposmotic solutions, the cells expanded osmometrically and then underwent RVD. Concomitant with the volume response, there was a transient increase in [Ca2+]i, whose onset preceded RVD. For hyposmotic solutions (up to ∼−40%), [Ca2+]i increased steeply with the reciprocal of the external osmotic pressure and with the cell volume. Chelation of external and internal Ca2+, with EGTA and 1,2-bis-(o -aminophenoxy) ethane-N,N,N ′,N ′-tetraacetic acid (BAPTA), respectively, attenuated but did not prevent RVD. This Ca2+-independent RVD proceeded even when there was a concomitant decrease in [Ca2+]i below resting levels. Similar results were obtained in cells loaded with calcein. For cells not treated with BAPTA, restoration of external Ca2+ during the relaxation of RVD elicited by Ca2+-free hyposmotic solutions produced an increase in [Ca2+]i without affecting the rate or extent of the responses. RVD and the increase in [Ca2+]i were blocked or attenuated upon the second of two ∼40% hyposmotic challenges applied at an interval of 30–60 min. The inactivation persisted in Ca2+-free solutions. Hence, our simultaneous measurements of intracellular Ca2+ and volume in single neuroblastoma cells directly demonstrate that an increase in intracellular Ca2+ is not necessary for triggering RVD or its inactivation. The attenuation of RVD after Ca2+ chelation could occur through secondary effects or could indicate that Ca2+ is required for optimal RVD responses.  相似文献   

9.
ICRAC (the best characterized Ca2+ current activated by store depletion) was monitored concurrently for the first time with [Ca2+] changes in internal stores. To establish the quantitative and kinetic relationship between these two parameters, we have developed a novel means to clamp [Ca2+] within stores of intact cells at any level. The advantage of this approach, which is based on the membrane-permeant low-affinity Ca2+ chelator N,N,N′,N′-tetrakis (2-pyridylmethyl)ethylene diamine (TPEN), is that [Ca2+] within the ER can be lowered and restored to its original level within 10–15 s without modifications of Ca2+ pumps or release channels. Using these new tools, we demonstrate here that Ca2+ release–activated Ca2+ current (ICRAC) is activated (a) solely by reduction of free [Ca2+] within the ER and (b) by any measurable decrease in [Ca2+]ER. We also demonstrate that the intrinsic kinetics of inactivation are relatively slow and possibly dependent on soluble factors that are lost during the whole-cell recording.  相似文献   

10.
Summary Diffusion of inorganic mercury (Hg2+) through planar lipid bilayer membranes was studied as a function of chloride concentration and pH. Membranes were made from egg lecithin plus cholesterol in tetradecane. Tracer (203Hg) flux and conductance measurements were used to estimate the permeabilities to ionic and nonionic forms of Hg. At pH 7.0 and [Cl] ranging from 10–1000mm, only the dichloride complex of mercury (HgCl2) crosses the membrane at a significant rate. However, several other Hg complexes (HgOHCl, HgCl 3 and HgCl 4 2– ) contribute to diffusion through the aqueous unstirred layer adjacent to the membrane. The relation between the total mercury flux (J Hg), Hg concentrations, and permeabilities is: 1/J Hg=1/P ul[Hg t ]+1/P m [HgCl2], where [Hg t ] is the total concentration of all forms of Hg,P ul is the unstirred layer permeability, andP m is the membrane permeability to HgCl2. By fitting this equation to the data we find thatP m =1.3×10–2 cm sec–1. At Cl concentrations ranging from 1–100mm, diffusion of Hg t through the unstirred layer is rate limiting. At Cl concentrations ranging from 500–1000mm, the membrane permeability to HgCl2 becomes rate limiting because HgCl2 comprises only about 1% of the total Hg. Under all conditions, chemical reactions among Hg2+, Cl and/or OH near the membrane surface play an important role in the transport process. Other important metals, e.g., Zn2+, Cd2+, Ag+ and CH3Hg+, form neutral chloride complexes under physiological conditions. Thus, it is likely that chloride can facilitate the diffusion of a variety of metals through lipid bilayer and biological membranes.  相似文献   

11.
Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i) initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii) the second phase is due to the delayed reduction of Ca2+ release and /or reduction of the Ca2+ sensitivity of the myofibrils due to high [Pi]i.  相似文献   

12.
The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca2+]i) and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca2+]i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on KATP channel activity but not on tetrodotoxin-sensitive Na+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca2+]i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by KATP channel activity or reduction in α-cell [Ca2+]i. Our results demonstrate that glucose uncouples the positive relationship between [Ca2+]i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.  相似文献   

13.
Single-channel properties of the Xenopus inositol trisphosphate receptor (IP3R) ion channel were examined by patch clamp electrophysiology of the outer nuclear membrane of isolated oocyte nuclei. With 140 mM K+ as the charge carrier (cytoplasmic [IP3] = 10 μM, free [Ca2+] = 200 nM), the IP3R exhibited four and possibly five conductance states. The conductance of the most-frequently observed state M was 113 pS around 0 mV and ∼300 pS at 60 mV. The channel was frequently observed with high open probability (mean P o = 0.4 at 20 mV). Dwell time distribution analysis revealed at least two kinetic states of M with time constants τ < 5 ms and ∼20 ms; and at least three closed states with τ ∼1 ms, ∼10 ms, and >1 s. Higher cytoplasmic potential increased the relative frequency and τ of the longest closed state. A novel “flicker” kinetic mode was observed, in which the channel alternated rapidly between two new conductance states: F1 and F2. The relative occupation probability of the flicker states exhibited voltage dependence described by a Boltzmann distribution corresponding to 1.33 electron charges moving across the entire electric field during F1 to F2 transitions. Channel run-down or inactivation (τ ∼ 30 s) was consistently observed in the continuous presence of IP3 and the absence of change in [Ca2+]. Some (∼10%) channel disappearances could be reversed by an increase in voltage before irreversible inactivation. A model for voltage-dependent channel gating is proposed in which one mechanism controls channel opening in both the normal and flicker modes, whereas a separate independent mechanism generates flicker activity and voltage- reversible inactivation. Mapping of functional channels indicates that the IP3R tends to aggregate into microscopic (<1 μm) as well as macroscopic (∼10 μm) clusters. Ca2+-independent inactivation of IP3R and channel clustering may contribute to complex [Ca2+] signals in cells.  相似文献   

14.
1. Two methods are given for measuring the rate of diffusion of CO2 in tissue membranes. Methods are also given for the determination of tissue thickness and the absorption coefficient for CO2 in tissues. 2. The values obtained for the permeability constant (P x 104) at 22°C. for CO2 in the following tissues are:—frog skin, 3.05; connective tissue (dog), 2.65; smooth muscle (cat), 5.00; frog muscle, 5.29; striated muscle (dog), 4.70. P is expressed as cc. per cm.2 per minute under a pressure gradient of one atmosphere per cm. 3. Evidence is presented to show that in a "steady state" bicarbonate contributes a negligible amount to the diffusion of CO2. 4. The absorption coefficient for CO2 in frog skin is 0.73 cc. per cc. and for frog muscle 0.78 cc. per cc. 5. In all of the tissues studied the diffusion of CO2 is slower than in water. The diffusion coefficients (K x 104 in cm.2/minute) at 22°C. for tissues as compared with water are:—water (16°C.), 9.5 (Hüfner, 1897); frog skin, 4.1; connective tissue, 3.7; frog muscle, 6.8; striated muscle (dog), 6.0; smooth muscle (cat), 6.4. 6. The time course of saturation of a tissue with CO2 is altered in the presence of available base. Non-acidified tissues saturate more slowly than acidified tissues and the rate of saturation is dependent on the CO2 tension.  相似文献   

15.
Central to evaluating the effects of ocean acidification (OA) on coral reefs is understanding how calcification is affected by the dissolution of CO2 in sea water, which causes declines in carbonate ion concentration [CO32−] and increases in bicarbonate ion concentration [HCO3]. To address this topic, we manipulated [CO32−] and [HCO3] to test the effects on calcification of the coral Porites rus and the alga Hydrolithon onkodes, measured from the start to the end of a 15-day incubation, as well as in the day and night. [CO32−] played a significant role in light and dark calcification of P. rus, whereas [HCO3] mainly affected calcification in the light. Both [CO32−] and [HCO3] had a significant effect on the calcification of H. onkodes, but the strongest relationship was found with [CO32−]. Our results show that the negative effect of declining [CO32−] on the calcification of corals and algae can be partly mitigated by the use of HCO3 for calcification and perhaps photosynthesis. These results add empirical support to two conceptual models that can form a template for further research to account for the calcification response of corals and crustose coralline algae to OA.  相似文献   

16.
I. Plasmalemma. 1. The order of toxicity of the salts used in these experiments on the surface membrane of a cell, taking as a criterion viability of amebæ immersed in solutions for 1 day, is HgCl2, FeCl3> AlCl3> CuCl2> PbCl2> FeCl2. Using viability for 5 days as a criterion, the order of toxicity is PbCl2> CuCl2> HgCl2> AlCl3> FeCl3> FeCl2. 2. The rate of toxicity is in the order FeCl3> HgCl2> AlCl3> FeCl2> CuCl2> PbCl2. 3. The ability of amebæ to recover from a marked tear of the plasmalemma in the solutions of the salts occurred in the following order: AlCl3> PbCl2> FeCl2> CuCl2> FeCl3> HgCl2. II. Internal Protoplasm. 4. The relative toxicity of the salts on the internal protoplasm, judged by the recovery of the amebæ from large injections and the range over which these salts can cause coagulation of the internal protoplasm, is in the following order: PbCl2> CuCl2> FeCl3> HgCl2> FeCl2> AlCl3. 5. AlCl3 in concentrations between M/32 and M/250 causes a marked temporary enlargement of the contractile vacuole. FeCl2, FeCl3, and CuCl3 produce a slight enlargement of the vacuole. 6. PbCl2, in concentrations used in these experiments, appears to form a different type of combination with the internal protoplasm than do the other salts. III. Permeability. 7. Using the similarity in appearance of the internal protoplasm after injection and after immersion to indicate that the surface is permeable to a substance in which the ameba is immersed, it is concluded that AlCl3 can easily penetrate the intact plasmalemma. CuCl2 also seems to have some penetrating power. None of the other salts studied give visible internal evidence of penetrability into the ameba. IV. Toxicity. 8. The toxic action of the chlorides of the heavy metals used in these experiments, and of aluminum, is exerted principally upon the surface of the cell and is due not only to the action of the metal cation but also to acid which is produced by hydrolysis.  相似文献   

17.
1. The chlorophyll-protein compound of the spinach leaf has been studied in the air-driven ultracentrifuge using the Svedberg light-absorption method, and a direct-reading refractive index method. 2. When the untreated extracts are centrifuged at low speeds, the green protein sediments with a purely random spread of particle sizes confirming the fact that the protein is not in true solution. 3. In the presence of digitonin, bile salts, and sodium desoxycholate, the extracts are clarified. These detergents split the chlorophyll from the protein and the protein itself shows a sedimentation constant of 13.5 x 10–13 equivalent to a molecular weight of at least 265,000 as calculated from Stokes'' law. This probably represents the minimum size of the protein in native form. 4. Sodium dodecyl sulfate, a detergent which also clarifies the leaf extracts, shows a different behavior. The prosthetic group remains attached to the protein but the protein is split into smaller units. In 0.25 per cent SDS, S 20 is 2.6 x 10–13 over a pH range of 5 to 9, although at the acid pH chlorophyll is converted to phaeophytin. In 2.5 per cent SDS, S 20 is 1.7 x 10–13 suggesting a further splitting of the protein. 5. No differences in behavior were found for the various chloroplast pigments.  相似文献   

18.
A practical guide to calculating the mannitol (MAN) amendment required to achieve the desired water potential (Ψ) of polyethylene glycol/dextran (PEG/DEX) aqueous two-phase systems for protoplast purification is presented. The empirically generated equation Ψ = 305[PEG′]2[MAN] + 0.74[PEG′][MAN]T − 103[PEG′][MAN] + 5.6[PEG′]2T − 623[PEG′]2 − 0.25[PEG′]T + 12.7[PEG′] − 0.078[MAN]T − 22.75[MAN]accurately predicts experimental Ψ (in bars). [PEG′] indicates the presence of DEX where [DEX] = [PEG]/(0.6−0.4[PEG]). The equation is applicable for these ranges: [PEG′] from 0.047 to 0.13 gram per gram H2O; [MAN] from 0 to 0.7 molal; T from 4.5 to 40°C. Actual Ψ should differ from derived Ψ by no more than 8% for the least negative values to 4% for the most negative values. The Ψ for solutions of MAN, of PEG, and of DEX were also determined. Equations to fit data for each were generated. Analyses indicated a significant synergistic effect on Ψ when MAN is added to PEG/DEX and, at certain concentrations, between PEG and DEX.  相似文献   

19.
Increasing night-time temperatures are a major threat to sustaining global rice (Oryza sativa L.) production. A simultaneous increase in [CO2] will lead to an inevitable interaction between elevated [CO2] (e[CO2]) and high night temperature (HNT) under current and future climates. Here, we conducted field experiments to identify [CO2] responsiveness from a diverse indica panel comprising 194 genotypes under different planting geometries in 2016. Twenty-three different genotypes were tested under different planting geometries and e[CO2] using a free-air [CO2] enrichment facility in 2017. The most promising genotypes and positive and negative controls were tested under HNT and e[CO2] + HNT in 2018. [CO2] responsiveness, measured as a composite response index on different yield components, grain yield, and photosynthesis, revealed a strong relationship (R2 = 0.71) between low planting density and e[CO2]. The most promising genotypes revealed significantly lower (P < 0.001) impact of HNT in high [CO2] responsive (HCR) genotypes compared to the least [CO2] responsive genotype. [CO2] responsiveness was the major driver determining grain yield and related components in HCR genotypes with a negligible yield loss under HNT. A systematic investigation highlighted that active selection and breeding for [CO2] responsiveness can lead to maintained carbon balance and compensate for HNT-induced yield losses in rice and potentially other C3 crops under current and future warmer climates.

Active selection for carbon dioxide responsiveness in rice and other C3 crops can mitigate yield loss induced by high night temperature.  相似文献   

20.
By examining the consequences both of changes of [K+]o and of point mutations in the outer pore mouth, our goal was to determine if the mechanism of the block of Kv1.5 ionic currents by external Ni2+ is similar to that for proton block. Ni2+ block is inhibited by increasing [K+]o, by mutating a histidine residue in the pore turret (H463Q) or by mutating a residue near the pore mouth (R487V) that is the homolog of Shaker T449. Aside from a slight rightward shift of the Q-V curve, Ni2+ had no effect on gating currents. We propose that, as with Ho+, Ni2+ binding to H463 facilitates an outer pore inactivation process that is antagonized by Ko+ and that requires R487. However, whereas Ho+ substantially accelerates inactivation of residual currents, Ni2+ is much less potent, indicating incomplete overlap of the profiles of these two metal ions. Analyses with Co2+ and Mn2+, together with previous results, indicate that for the first-row transition metals the rank order for the inhibition of Kv1.5 in 0 mM Ko+ is Zn2+ (KD ~ 0.07 mM) ≥ Ni2+ (KD ~ 0.15 mM) > Co2+ (KD ~ 1.4 mM) > Mn2+ (KD > 10 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号