首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.  相似文献   

2.
To investigate whether ion currents help to localize growth and development of Blastocladiella emersonii, we grew the organisms in gradients of various ionophores and inhibitors. Gradients were generated by placing into the culture fine glass fibers coated with insoluble inhibitors; in some cases, inhibitors were adsorbed onto beads of ion-exchange resin. Organisms growing in many of these gradients exhibited a striking tendency for the thalli to grow toward the fiber. This proved to be misleading; the cells grew not toward the source of the ionophore but into the unoccupied zone of inhibition adjacent to the fiber. Fibers coated with gramicidin-D induced marked effects on the growth of the rhizoids, which were greatly enlarged and grew toward and onto the fiber. None of the other inhibitors produced such effects, except for beads coated with the proton conductors tetrachlorosalicylanilide and compound 1799. The results suggest that orientation of rhizoid growth results from enhancement of proton flux across the plasma membrane. Growth of the rhizoids was also strongly oriented by gradients of inorganic phosphate and an amino acid mixture; gradients of glucose, K+, Ca2+, and glutamate were ineffective. We propose that a major physiological function of the rhizoid is to transport nutrients to the thallus. Finally, we examined the effects of a series of benzimidazole antitubulins as well as the cytochalasins. These did not orient growth but grossly perturbed the pattern of cellular organization, producing small spherical cells with multiple stunted rhizoids. The findings are interpreted in terms of the interaction of an endogenous transcellular proton current with elements of the cytoskeleton in the determination of form.  相似文献   

3.
Rhizoids played essential roles in the early evolution of land plants. All liverworts, the closest living relatives of the first land plants, produce unicellular rhizoids, except for Haplomitrium. The complex thalloids are uniquely characterized by dimorphic rhizoids: smooth rhizoids like those also produced by the simple thalloid and leafy clades and pegged rhizoids. Although this dimorphism has been long and widely recognized, considerations of its functional basis are few and contradictory. Here we present conclusive cytological and experimental evidence that the function of smooth and pegged rhizoids is markedly different, as reflected by major differences in their structure, physiology and vital status. Mature smooth rhizoids are alive (indeed their main functions in nutrition, anchorage and as conduits for mycobiont entry all depend on living cytoplasm) and dehydration causes irreversible collapse of their cell walls, but pegged rhizoids, which are dead at maturity, function as a highly effective internalized external water‐conducting system, especially within carpocephala. Their cavitation‐resistant, elastic walls ensure retention of functional integrity during periods of desiccation. Our structural and functional data now raise novel hypotheses on patterns of rhizoid evolution in Marchantiopsida and open the way for dissecting the molecular basis of rhizoid morphogenesis in liverworts. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 68–92.  相似文献   

4.
5.
The excitation of pyramidal cells in the motor cortex, produced by electric fields generated by distant electrodes or by electromagnetic induction, has been modelled. Linear, steady-state models of myelinated axons capture most of the geometrical aspects of neurone activation in electric fields. Some non-linear features can be approximated. Models with a proximal sealed-end and distal infinite axon, or of finite length, are both serviceable. Surface anodal stimulation produces hyperpolarisation of the proximal axon (closest to the anode) and depolarisation in the distal axon. The point of maximum depolarisation can be influenced by the location of the cathode (greater separation of anode and cathode causes more distal depolarisation). Axon bends can produce very localised depolarisation. Cathodal stimulation may be less effective than anodal as a result of anodal block of conduction of action potentials in the distal axon. The latencies of responses to anodal stimulation, recorded in the distal axon, will decrease as the stimulus strength is increased and the point of action potential initiation moves distally node by node. Larger jumps in latency will be produced when the point of action potential initiation moves from one axon bend to another.  相似文献   

6.
Pigment migration in the eyes of Austrolestes annulosus and Ischnura heterosticta cause pronounced colour changes which superficially resemble those of Odonata epidermal chromatophores. In both species, the migratory pigment is confined to the distal pigment cells of dorsal ommatidia. When the pigment is concentrated around the base of the crystalline cones, a dense layer of Tyndall blue bodies produce bright ‘blue phase’ colours. Distal migration of the pigment disrupts the Tyndall effect and produces ‘dark phase’ (grey-brown) colours. As in chromatophores, eye pigments consist of a mixture of xanthommatin and dihydroxanthommatin together with an additional pigment, possibly ommin A, not found in chromatophores.As with chromatophores, eye pigments respond to change in temperature only, change in light intensity having no effect. The change from blue to dark phase (at 8°C) occurs at the same rate as in chromatophores, whereas the reverse change (at 20°C) is significantly slower. Equilibrium colours at constant temperature are variable but significantly different from those of chromatophores at 12°C and above. There is no diurnal variation in responsiveness as is found in chromatophores.Isolated dark phase eyes or undamaged pieces of eye are able to change to blue phase after temperature increase. Isolated blue phase eyes show little response to temperature decrease, isolated undamaged pieces show no response. A temperature difference between the eyes of the same intact insect may result in minor colour differences. Ablation of the optic tract or of tissue posterior to the optic tract prevents normal colour change from blue to dark phase. The above results indicate that eye pigment cells are structurally similar to Odonata chromatophores and are under similar environmental and physiological control.  相似文献   

7.
Gametophytes of the shoe-string fern Vittaria graminifolia produce linear, six-celled propagules called gemmae. The terminal cells of each gemma elongate into primary rhizoids in culture, and the inner body cells divide asymmetrically to produce prothallial or rhizoid initials. The initiation of both asymmetric cell division and rhizoid elongation is delayed by light intensities greater than 2 w/m2. The maximal rates of cell division and rhizoid elongation are unaltered. A 24-hr pulse of high light intensity delays cell division and rhizoid elongation to the same extent, whenever applied during the first 3 d of culture. The model we propose for cell division hypothesizes the existence of a preparatory phase of finite duration prior to mitosis that is sensitive to light intensity. If a cell is irradiated by light intensities greater than 2 w/m2 while in the preparatory phase, its entrance into mitosis is delayed. A similar model is proposed for the initiation of rhizoid elongation. Despite the fact that both cell division and rhizoid elongation are dependent on photosynthesis, direct measurements of CO2-uptake rates show that the inhibitory effects of high light intensities are not due to an inhibition of photosynthesis.  相似文献   

8.
Studies on Caulerpa prolifera rhizoids were carried out to determine the possibility of mass culture, because the rhizoids produce a bio-adhesive. Rhizoids can be induced by cutting the base of a blade and floating it in a media or planting it in sand. Measurement of rhizoid production included determination of number, length, and the weight of attached sand grains. The growth experiments were for 1–2 weeks and fronds growth was compared to rhizoid production. Optimal conditions for rhizoid growth included low levels of nitrogen and phosphate (less than 5 and 2 μM, respectively), low irradiance (30 μmol photon m−2 s−1), moderate temperature (22–28°), continuous shaking, addition of microelements and auxin (1 ppm) and initially detached fronds followed by attachment. Under these optimal conditions maximal weekly growth reached 70–170 rhizoids per blade, 7–11 mm length and maximal attachment to sand grains. Blade growth of C. prolifera responded similarly to rhizoid production and reached a weekly growth rate of 30–130%.  相似文献   

9.
10.
Summary In contrast to all filamentous fungi examined to date, vegetative hyphae ofAllomyces macrogynus, whether extending or not, produced an outward flow of positive electrical current, at a maximum of 0.16 A cm–2 around 40 m behind the apex, as measured with a vibrating probe. Inward currents of up to 0.55 A cm–2 were recorded around the rhizoids. Increases in outward current were observed in hyphae pre-grown under oxygen deficiency and then allowed to widen backwards to the hyphal base in sufficient oxygen. When spores were germinated in an applied electrical field they produced rhizoids predominantly towards the anode. Hyphae were produced initially towards the cathode but later bent around towards the anode. Experiments with a range of chemicals provided no evidence for the involvement of calcium in vegetative growth and development inA. macrogynus. Polyoxin and nikkomycin, inhibitors of chitin synthesis, had no effect on swimming zoospores, but inhibited wall formation of cysts, rhizoids and forward and backward growing hyphae.  相似文献   

11.
The first sign of initiation of growth in dormant gemmae ofL. cruciata is the formation of rhizoids. Gemmae in the cupcannot ‘germinate‘ until exposed to substrate conditionsallowing the outward diffusion of a growth inhibitor. Rhizoidproduction depends on temperature and light. With long lightperiods rhizoids are formed over a wide range of temperatures.Transference to darkness after 2 h white light causes about50 per cent of gemmae to produce rhizoids, and these are formedonly between 20 and 25 °C. Outside these temperature limitsthe percentage of gemmae with rhizoids soon drops to zero. Althoughrhizoid production is prevented in total darkness, gemmae remainalive for well over 6 months. Red light for as little as 5 spromoted, and far-red light inhibited, rhizoid formation inthe dark. Coumarin and indol-3yl-acetic acid can substitutefor light and partly reverse the effect of far-red irradiation.  相似文献   

12.
Following a geometrically asymmetrical cell division during germination of spores of the fern Onoclea sensibilis L., the small cell differentiates into a rhizoid and the large cell divides to form the protonema. Using silver-staining of two-dimensional gels, we have examined the soluble proteins of spores during germination and of separated rhizoid protoplasts and protonemal cells. Of over 500 polypeptides followed, nearly 25% increased or decreased in prominence during spore germination and the initial phases of rhizoid elongation. Soluble proteins from purified protoplasts of young rhizoids were quantitatively different from those of protonemal cells and germinated spores. Nine polypeptides which appeared after cell division were substantially more prominent in rhizoid protoplasts than in whole germinated spores and have been putatively designated rhizoid-specific polypeptides. The differences in the soluble protein composition of young rhizoids and protonemal cells probably reflect the differential organelle distribution between the two cells as well as differential net protein synthesis in the cytoplasms of the two cells.  相似文献   

13.
Galvanotaxis of slime mold   总被引:1,自引:0,他引:1       下载免费PDF全文
The plasmodium of Physarum polycephalum reacts to direct current by migration toward the cathode. Cathodal migration was obtained upon a variety of substrata such as baked clay, paper, cellophane, and agar with a current density in the substratum of 1.0 microa./mm.(2) Injury was produced by current densities of 8.0 to 12.0 microa./mm.(2) The negative galvanotactic response was not due to electrode products. Attempts to demonstrate that the response was due to gradients or orientation in the substratum, pH changes in the mold, cataphoresis, electroosmosis, or endosmosis were not successful. The addition of salts (CaCl(2), LiCl, NaCl, Na(2)SO(4), NaHCO(3), KCl, MgSO(4), sodium citrate, and sea water) to agar indicated that change of cations had more effect than anions upon galvanotaxis and that the effect was upon threshold values. K ion (0.01 M KCl) increased the lower threshold value to 8.0 microa./mm.(2) and the upper threshold value to 32.0 microa./mm.(2), whereas the Li ion (0.01 M LiCl) increased the lower threshold to only 4.0 microa./mm.(2) and the upper threshold to only 16.0 microa./mm.(2) The passage of electric current produced no increase in the rate of cathodal migration; neither was there a decrease until injurious current densities were reached. With increase of subthreshold current densities there was a progressive decrease in rate of migration toward the anode until complete anodal inhibition occurred. There was orientation at right angles to the electrodes in alternating current (60 cycle) with current density of 4.0 microa./mm.(2) and in direct current of 5.0 microa./mm.(2) when polarity of current was reversed every minute. It is concluded that the negative galvanotactic response of P. polycephalum is due to inhibition of migration on the anodal side of the plasmodium and that this inhibition results in the limitation of the normal migration of the mold to a cathodal direction. The mechanism of the anodal inhibition has not been elucidated.  相似文献   

14.
1. The eggs of Fucus furcatus develop perfectly in sea water acidified to pH 6.0. They are retarded at pH 5.5. At pH 5.0 they do not develop, nor do they cytolize. 2. In normal sea water in the dark at 15°C., eggs develop rhizoids on the sides in the resultant direction of a mass of neighboring eggs. The polarity and the whole developmental pattern of the embryo is thereby induced. This inductive effect does not operate, however, unless the directing mass is an appreciable aggregation of cells (10 or more), or unless there are numerous other eggs in the dish. A group of five eggs alone in a dish do not carry out mutual inductions. Two eggs alone in a dish do not develop rhizoids toward each other. 3. When the sea water is acidified to pH 6.0 all sizes of aggregations carry out mutual inductions. Two eggs alone in a dish now develop rhizoids on the sides toward each other, provided they are not more than about 4 egg diameters apart. 4. Increased hydrogen ion concentration thus augments or intensifies the mutual inductive effect. 5. This may explain why only larger masses of eggs show inductions in normal sea water, since presumably the larger masses considerably increase the hydrogen ion concentration locally. 6. The nature of the inductive action is discussed. 7. In acidified sea water at pH 6.0, compared with normal sea water at pH 7.8–8.0, the rhizoids originate and extend with a strongly increased downward component. The substrate then forces further extension or growth of the rhizoid to be in the plane of the substrate.  相似文献   

15.
Yoshida K  Inoue N  Sonobe S  Shimmen T 《Protoplasma》2003,221(3-4):227-235
Summary.  Some species of Spirogyra form rosette-shaped or rod-shaped rhizoids in the terminal cell of the filaments. In the present study, we analyzed an involvement of microtubules (MTs) in rhizoid differentiation. Before rhizoid differentiation, cortical MTs were arranged transversely to the long axis of cylindrical cells, reflecting the diffuse growth. At the beginning of rhizoid differentiation, MTs were absent from the extreme tip of the terminal cell. In the other area of the cell, however, MTs were arranged transversely to the long axis of the cell. In the fully differentiated rosette-shaped rhizoid, MTs were randomly organized. However, at a younger stage of rosette-shaped rhizoids, MTs were sometimes arranged almost transversely in the lobes of the rosette. In the rod-shaped rhizoid, MTs were arranged almost transversely. MT-destabilizing drugs (oryzalin and propyzamide) induced swelling of rhizoids, and neither rosette-shaped nor rod-shaped rhizoids were formed. The role of MTs in rhizoid differentiation was discussed. Received June 17, 2002; accepted November 11, 2002; published online April 8, 2003 RID="*" ID="*" Correspondence and reprints: Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Japan.  相似文献   

16.
Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface. This conserved dynamic organization is required for the spatial stability of tip-growth, as demonstrated by the formation of sinuous tip-growing cells upon treatment with microtubule-stabilizing or microtubule-destabilizing drugs. Microtubule associated proteins (MAPs) that either stabilize or destabilize microtubule networks are required for the maintenance of stable tip-growth in root hairs of flowering plants. NIMA RELATED KINASE (NEK) is a MAP that destabilizes microtubule growing ends in the apical dome of tip-growing rhizoid cells in the liverwort Marchantia polymorpha. We hypothesized that both microtubule stabilizing and destabilizing MAPs are required for the maintenance of the stable tip-growth in liverworts. To identify genes encoding microtubule-stabilizing and microtubule-destabilizing activities we generated 120,000 UV-B mutagenized and 336,000 T-DNA transformed Marchantia polymorpha plants and screened for defective rhizoid phenotypes. We identified 119 mutants and retained 30 mutants in which the sinuous rhizoid phenotype was inherited. The 30 mutants were classified into at least 4 linkage groups. Characterisation of two of the linkage groups showed that MAP genes–WAVE DAMPENED2-LIKE (WDL) and NIMA-RELATED KINASE (NEK)–are required to stabilize the site of tip growth in elongating rhizoids. Furthermore, we show that MpWDL is required for the formation of a bundled array of parallel and longitudinally orientated microtubules in the non-growing shank of rhizoids where MpWDL-YFP localizes to microtubule bundles. We propose a model where the opposite functions of MpWDL and MpNEK on microtubule bundling are spatially separated and promote tip-growth spatial stability.  相似文献   

17.
During spore germination in the fern, Onoclea sensibilis L., the nucleus moves from a central position to one end, and an asymmetrical cell division partitions the spore into two cells of greatly unequal size. The smaller cell differentiates directly into a rhizoid, whereas the larger cell and its derivatives give rise to the prothallus. In the presence of 5 mM caffeine, the nuclei of most of the spores undergo mitotic replication, whereas cell wall formation is blocked. Multinucleate single cells are produced, which are capable of growth, but no rhizoid differentiation occurs. In some cases a partial cell wall is produced, but the nucleus moves through the discontinuity back to the center of the spore, and the enucleate, incompletely partitioned small “cell” fails to differentiate into a rhizoid. In less than 1% of the spores a broad protuberance, whose wall is yellow-brown, is formed in a multinucleate single cell. The color, staining reaction to ruthenium red, and ultrastructural appearance of the protuberance resemble that of the rhizoid wall. It appears that infrequently in the caffeine-treated spores, a feature which is characteristic of rhizoids is expressed, in the absence of asymmetric cell division, in a cell which otherwise is unable to produce a rhizoid. The results are interpreted to mean that the spore has a highly localized, persistent differentiated region. For rhizoid differentiation to occur, a nucleus must be confined in that region – a confinement which normally is accomplished by the geometrically asymmetric first cell division of germination.  相似文献   

18.
In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.  相似文献   

19.
Phytochrome-dependent growth in Dryopteris paleacea Sw. was investigated in young, developing gametophytes with respect to formation and differentiation of rhizoids. Under continuous red light (Rc), the first rhizoids grew synchronously by tip elongation at a constant rate of 240 μm · d−1 until formation and outgrowth of the second rhizoid. Cessation of growth of the first rhizoids and outgrowth of the second rhizoids showed a correlation in time assumed to be mediated by intercellular signaling. The first rhizoids showed two modes of response to actinic irradiations: (i) modulation of rhizoid growth, and (ii) re-induction of growth in non-growing rhizoids. In the former, the promotory effect of actinic irradiations on rhizoids pre-cultured under Rc determined both the time for which rhizoids continued to grow after transfer into darkness and the final rhizoid length. In the latter, re-induced growth was studied using non-growing rhizoids which were obtained after irradiation with a far-red light (FR) pulse at the end of the pre-culture in Rc and transfer into darkness for 3 d to stop growth. Re-induction of growth occurred with a lag phase of 36 to 48 h after formation of the FR-absorbing form of phytochrome (Pfr) by a red light (R) pulse. From the incomplete R/FR reversibility it is evident that, here, coupling of Pfr to signal transduction is possible within minutes. Re-induction of growth possesses the advantage that the effect of actinic irradiations can be studied as an all-or-none response at the level of single gametophytes in future experiments. The present results clearly indicate that the developmental stage of the whole gametophyte, i.e. temporal and spatial patterns undergone during development, affects the regulation of rhizoid growth by the external factor light. Received: 8 June 1998 / Accepted: 22 December 1998  相似文献   

20.
Some species of Spirogyra can anchor to substratum with rod- or rosette-shaped rhizoid (hapteron). The rhizoid differentiation can be induced by cutting algal filaments in a laboratory. Requirement of contact stimulation for rhizoid differentiation has been reported (Nagata in Plant Cell Physiol 14:531-541, 1973a). However, the control mechanism of rhizoid morphology has not been elucidated. When cut filaments were incubated on the glass surface, start of tip growth, secretion of lectin-binding material and callose synthesis were observed. In the absence of contact to the glass surface, none of above phenomena was induced. Systematic analysis showed that rosette-shaped rhizoid was formed only on the hydrophobic substratum. On the hydrophobic substratum, both Bandeiraea (Griffonia) simplicifolia lectin and jacalin strongly stained the rhizoids. On the hydrophilic substratum, however, only Bandeiraea (Griffonia) simplicifolia lectin strongly stained the rhizoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号