首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple mathematical formula can be derived, on the basis of inclusive fitness theory and notions of reproductive value, to represent the residual capacity of an individual to influence his inclusive fitness. This formula involves the individual's remaining reproductive potential in his expected natural lifetime, plus the summated impacts of his continued existence on the remaining reproductive potentials of each of his kin, each weighted by the coefficient of relationship. In theory, this quantity should predict the extent to which self-preservation is optimally expressed in that individual. For asocial species, the value will vary from zero up to the maximal reproductive value observable, and the logic of the Medawar-Williams theory of senescence should apply directly. However, for highly social species like our own, it can be demonstrated that negative values can also obtain, given the conjunction of low residual reproductive potential and burdensomeness toward kin. Much empirical evidence suggests that outright self-destructiveness is often found in circumstances of such conjunction.  相似文献   

2.
3.
A study has been made of those proteins which might offer exceptions to the law that the fluidity of a protein solution is a linear function of the volume concentration; viz., egg albumin, serum albumin, pseudoglobulin, euglobulin, gelatin, and sodium caseinogenate. Solutions of egg albumin below 20 per cent by weight obey the above law but somewhat below 30 per cent the fluidities begin to be too high, presumably due to the contribution to the fluidity made by the deformation of the particles as they come into contact, as the fluidity approaches zero. The fluidity of serum albumin solutions shows a similar behavior, being exceptional above 15 per cent in weight. Pseudoglobulin and euglobulin give fluidity-concentration curves (Fig. 4) which are linear up to about 2.5 per cent each in a total range of 20 and 14 per cent respectively. From this singular point both compounds show a second range which is linear. Pseudoglobulin is the only substance whose solutions seem to show a third linear range. We have also used the data of Chick and Martin for sodium caseinogenate and found evidence for two linear régimes. It is desirable at this time to call attention to the measurements of the flow of glycogen solutions by Botazzi and d''Errico (14) which in Fluidity and See PDF for Structure plasticity, page 207, are expressed in rhes. The data show two linear fluidity curves of different slopes. In this case it was definitely known that the data for each curve were measured with different viscometers which suggested the possibility of an error in viscometry entering in to confuse the issue. We have no suspicions as to the reliability of the data studied in this paper; we only wish to caution the readers that our hypotheses based on these data must be regarded with due reserve until confirmed. We have found a formula (11) based on the supposed linear relation between logarithmic fluidities and concentration which is convenient to use within the range, but close examination reveals that it does not reproduce the data for the higher concentrations at 25° nor does it permit extrapolation to pure water It is not realistic enough because it does not contemplate any change of régime in going from viscous to non-Newtonian or plastic flow. The formula does not apply to any other of the proteins studied in this paper nor to the great majority of proteins already reported as following the linear law. These are serious objections. We have therefore offered as an alternative a simple formula (24) according to which the fluidities are additive in the viscous régime. When the emulsoid particles approach close packing, they are deformed and this deformation contributes to the flow and the fluidity volume concentration curve is again linear. In fact, there may be one or more additional changes of régime.  相似文献   

4.
In some living cells the order of penetration of certain cations corresponds to that of their mobilities in water. This has led to the idea that electrolytes pass chiefly as ions through the protoplasmic surface in which the order of ionic mobilities is supposed to correspond to that found in water. If this correspondence could be demonstrated it would not prove that electrolytes pass chiefly as ions through the protoplasmic surface for such a correspondence could exist if the movement were mostly in molecular form. This is clearly shown in the models here described. In these the protoplasmic surface is represented by a non-aqueous layer interposed between two aqueous phases, one representing the external solution, the other the cell sap. The order of penetration through the non-aqueous layer is Cs > Rb > K > Na > Li. This will be recognized as the order of ionic mobilities in water. Nevertheless the movement is mostly in molecular form in the nonaqueous layer (which is used in the model to represent the protoplasmic surface) since the salts are very weak electrolytes in this layer. The chief reason for this order of penetration lies in the fact that the partition coefficients exhibit the same order, that of cesium being greatest and that of lithium smallest. The partition coefficients largely control the rate of entrance since they determine the concentration gradient in the non-aqueous layer which in turn controls the process of penetration. The relative molecular mobilities (diffusion constants) in the non-aqueous layer do not differ greatly. The ionic mobilities are not known (except for K+ and Na+) but they are of negligible importance, since the movement in the non-aqueous layer is largely in molecular form. They may follow the same order as in water, in accordance with Walden''s rule. Ammonium appears to enter faster than its partition coefficient would lead us to expect, which may be due to rapid penetration of NH3. This recalls the apparent rapid penetration of ammonium in living cells which has also been explained as due to the rapid penetration of NH3. Both observation and calculation indicate that the rate of penetration is not directly proportional to the partition coefficient but increases somewhat less rapidly. Many of these considerations doubtless apply to living cells.  相似文献   

5.
It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman''s “checker-board” trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum “coordinates”. This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein''s velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.  相似文献   

6.
The P.D. across the protoplasm of Valonia macrophysa has been studied while the cells were exposed to artificial solutions resembling sea water in which the concentration of KCl was varied from 0 to 0.500 mol per liter. The P.D. across the protoplasm is decreased by lowering and increased by raising the concentration of KCl in the external solution. Changes in P.D. with time when the cell is treated with KCl-rich sea water resemble those observed with cells exposed to Valonia sap. Varying the reaction of natural sea water from pH 5 to pH 10 has no appreciable effect on the P.D. across Valonia protoplasm. Similarly, varying the pH of KCl-rich sea water within these limits does not alter the height of the first maximum in the P.D.-time curve. The subsequent behavior of the P.D., however, is considerably affected by the pH of the KCl-rich sea water. These changes in the shape of the P.D.-time curve have been interpreted as indicating that potassium enters Valonia protoplasm more rapidly from alkaline than from acidified KCl-rich sea water. This conclusion is discussed in relation to certain theories which have been proposed to explain the accumulation of KCl in Valonia sap. The initial rise in P.D. when a Valonia cell is transferred from natural sea water to KCl-rich sea water has been correlated with the concentrations of KCl in the sea waters. It is assumed that the observed P.D. change represents a diffusion potential in the external surface layer of the protoplasm, where the relative mobilities of ions may be supposed to differ greatly from their values in water. Starting with either Planck''s or Henderson''s formula, an equation has been derived which expresses satisfactorily the observed relationship between P.D. change and concentration of KCl. The constants of this equation are interpreted as the relative mobilities of K+, Na+, and Cl- in the outer surface layer of the protoplasm. The apparent relative mobility of K+ has been calculated by inserting in this equation the values for the relative mobilities of Na+ (0.20) and Cl- (1.00) determined from earlier measurements of concentration effect with natural sea water. The average value for the relative mobility of K+ is found to be about 20. The relative mobility may vary considerably among different individual cells, and sometimes also in the same individual under different conditions. Calculation of the observed P.D. changes as phase-boundary potentials proved unsatisfactory.  相似文献   

7.
1. The acceleration by bicarbonates of the swelling and hemolysis of erythrocytes in solutions of ammonium salts, first reported by Ørskov, is strikingly dependent upon carbonic anhydrase, being almost abolished by inhibitors of this enzyme such as KCN and sulfanilamide, and under suitable conditions being enhanced by its addition to the external solution. This behavior gives support to the theory of "catalyzed diffusion" as an explanation of the Ørskov effect. 2. The inhibitory effects of both sulfanilamide and KCN seem to be capable of complete reversal on washing the erythrocytes in isotonic salt solutions. The full effect of KCN appears almost instantly; that of sulfanilamide requires a period measured in seconds, or possibly even in minutes, to reach its maximum, the delay presumably being due to the slower penetration of the erythrocyte by this substance. Under favorable conditions the effect of concentrations of sulfanilamide of a few hundredths of a milligram per cent can be demonstrated. No similar effects have been obtained with sulfapyridine. 3. Bicarbonates also have a "catalytic" effect on the response of the internal pH of erythrocytes to changes in that of their surroundings. The resulting volume changes of the cell, which otherwise frequently require many minutes for their completion, may take place within a few seconds in the presence of low concentrations of bicarbonates. At a given pH value the effect of the latter substances is chiefly on the rate of the change and only to a minor extent on its magnitude. It may be further accelerated under appropriate conditions by the addition to the cell suspension of carbonic anhydrase, and can be almost abolished by KCN and by sulfanilamide. 4. Volume changes of erythrocytes associated with exchanges of Cl'' for SO4'''' ions are greatly accelerated by low concentrations of bicarbonates, this effect being likewise dependent upon carbonic anhydrase. There is some evidence that in this case the exchange takes place, at least in part, in two steps: Cl'' for HCO3'' and HCO3'' for SO4''''.  相似文献   

8.
In an attempt to evaluate taxonomic character of sugar composition of dermatophytes, the purified cell walls from 13 species are analyzed on neutral sugar composition by gas liquid chromatography. The results were principally compatible with those obtained by conventional morphological examination. Neutral sugar components of dermatophytes cell walls were mannose and glucose in the ratio of 1∶2.7 for Epidermophyton and 1∶1.4 for Microsporum. There were two types in Trichophyton, in which the ratios of mannose to glucose were 1∶1.6 and 1∶3.8. The cases of Trichophyton ferrugineum and Trichophyton mentagrophytes were exceptional. The ratio of the former was 1∶1.4, which implied the relation to Microsporum group, and the ratio of the latter was 1∶2.3, which was supposed to be the intermediate of two types of Trichophyton group. Albino type cell wall of Epidermophyton floccosum was more rich in glucose than pigmented type one.  相似文献   

9.
The ultrastructure of the carposporophyte and carposporogenesis is described for the parasitic red alga Plocamiocolax pulvinata Setch. After presumed fertilization the zygote nucleus is apparently transferred to the auxiliary cell which initiates gonimoblast cell production. These gonimoblast cells differentiate into storage or generative cells. Storage gonimoblast cells (SGC) are large and multinucleate, contain large quantities of starch and are located nearest the auxiliary cell, when compared to the smaller uninucleate, devoid of starch, generative gonimoblast cells (GGC) that form terminal lobes of carpospores. In addition, compressed membrane bodies and annulate lamellae are common in these cells. During carposporophyte maturation the amount of starch in the SGC's decreases and eventually the auxiliary cell, as well as SGC's, degenerate. Generative gonimoblast cells (GGC's) cleave repeatedly to form carpospores which are interconnected by small pit connections. Stage one-carpospores are recognized by their elongated shape, the formation of small  相似文献   

10.
In the preceding paper (1b) a formula was developed for the lowering of the fluidity of a medium by a mixture of proteins, given the volume concentration of each and its fluidity-lowering constant. Whole blood is now shown to follow an essentially similar formula, except that the hemoglobin content is taken from the literature as the best available measure of the volume of the blood cells Δ Φ = 0.24H, assuming the fluidity of the medium to be 53 rhes. Age, sex, diet, barometric pressure affect the hemoglobin content of the blood, but the formula may apply to any healthy human blood to about 3 per cent. The shape, number, and size of the blood cells, if known, might help to explain discrepancies as well as the state of oxidation of the blood. In disease the discrepancy becomes much greater, suggesting the possible use of rheology in diagnosis.  相似文献   

11.
I C Li  S C Wu  J Fu  E H Chu 《Mutation research》1985,149(1):127-132
Unequal growth rates between mutant and wild-type cells in a large population constitute a problem for the estimation of mutation rate. Over a period of cell growth, a selective advantage of one cell type over the other might lead to considerable error in the estimation of mutation rate if equal growth rates are assumed. In this study, we propose a formula and apply it to the estimation of spontaneous mutation rate in a growing population of Chinese hamster V79 cells in which ouabain-resistant mutant cells exhibit a slower growth rate than the wild-type cells. The formula is a generalization of that previously presented by Armitage (1953), and this is the first attempt to apply the deterministic approach for mutation rate estimation to cultured mammalian cells. The value of the estimated rate is compared with that derived from a parallel experiment using the fluctuation test of Luria and Delbrück (1943). The limitations and advantages of taking the deterministic approach to mutation rate estimation in mammalian cell systems are discussed.  相似文献   

12.
1. The adjacent, undifferentiated, uninucleated cells of the lateral meristem or cambium are of two distinct shapes and sizes: (1) small, more or less isodiametric initials which are of the same general order of magnitude as the cells of the terminal meristem and embryo; and (2) large, elongated initials which in certain cases may attain a length of more than 10,000 micra and a volume of 10,000,000 cubic micra. The large initials may be induced to divide to form small initials, and the latter to regenerate elongated cells of normal dimensions. Thus, the cambium affords an unusually favorable medium for the study of a number of fundamental physiological and cytological problems. 2. A study of the cambium reveals the fact that there is a very-much greater variability in the size of meristematic cells in plants than was suspected by Sachs or Strasburger, and that the working sphere of the nucleus is by no means so restricted as assumed by these investigators. 3. Although the larger cambial initials of Pinus strobus tend to have larger nuclei, the nucleocytoplasmic-relation varies within wide limits and the diploid number of chromosomes is constant. The conditions in the cambium do not support Winkler''s view that there is a close correlation between chromosomal number (chromosomal mass) and cell size in the somatic tissue of plants, and that giant cells are hyperchromatic. 4. The process of cell plate formation in the cambium is a remarkable phenomenon, and one which is significant in discussing the relative merits of various theories concerning the dynamics of karyokinesis and cytokinesis. 5. The newly formed partition membranes in the cambial initials frequently intersect the side walls at angles of varying degrees of acuteness, which is in contradiction to Errera''s (Plateau''s) Law of Minimal Area.  相似文献   

13.
1. The experiments demonstrate that when a constant electric potential of sufficient intensity is applied to Noctiluca, the protoplasmic films which represent a part of the visible continuous phase of the cytoplasm and plasma membrane at the surface of the cell, become unstable and break down, thus releasing the acid contents of one of the internal discontinuous phases present in the cytoplasm of Noctiluca. This process which occurs first at anode then at the cathode side of the cell, appears to be a selective deemulsification or coalescence similar to that at the surface of an emulsion having a viscous continuous phase. 2. The experiments demonstrate that Nernst''s equation See PDF for Equation which expresses approximately the relation of duration and intensity of a constant electric current to threshold stimulation of striated muscle, applies equally well to the process of anodal coalescence in Noctiluca. 3. Anodal and cathodal coalescence have different thresholds, due to the fact that the semipermeable plasma film at the surface of the cell is asymmetric with respect to the direction of the applied current. Attention is called to the possible relation between this phenomenon and the conditions occurring at the synapse between neurons. 4. The stability of the protoplasmic films in relation to the applied electric potential is greater in young cells than in old cells, or in other words the threshold intensity of the stimulus is higher for young than for old cells. 5. Attention is called to the occurrence in the same cell of different receptor-affector mechanisms having a corresponding difference in intensity threshold when an electric current is acting as a stimulus.  相似文献   

14.
15.
1. It has been shown by titration experiments that the globulin edestin behaves like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of edestin chloride or acetate separated by a collodion membrane from an acid solution free from protein was found to be influenced by salt concentration and hydrogen ion concentration in the way predicted by Donnan''s theory of membrane equilibrium. 3. The osmotic pressure of such edestin-acid salt solutions was found to be influenced by salt concentration and by hydrogen ion concentration in the same way as is the potential difference. 4. The colloidal behavior of edestin is thus completely analogous to that observed by Loeb with gelatin, casein, and egg albumin, and may be explained by Loeb''s theory of colloidal behavior, which is based on the idea that proteins react stoichiometrically as amphoteric electrolytes and on Donnan''s theory of membrane equilibrium.  相似文献   

16.
The dorsal and ventral cortical pathways, driven predominantly by magnocellular (M) and parvocellular (P) inputs, respectively, assume leading roles in models of visual information processing. Although in prior proposals, the dorsal and ventral pathways support non-conscious and conscious vision, respectively, recent modelling and empirical developments indicate that each pathway plays important roles in both non-conscious and conscious vision. In these models, the ventral P-pathway consists of one subpathway processing an object''s contour features, e.g. curvature, the other processing its surface attributes, e.g. colour. Masked priming studies have shown that feed-forward activity in the ventral P-pathway on its own supports non-conscious processing of contour and surface features. The dorsal M-pathway activity contributes directly to conscious vision of motion and indirectly to object vision by projecting to prefrontal cortex, which in turn injects top-down neural activity into the ventral P-pathway and there ‘ignites’ feed-forward–re-entrant loops deemed necessary for conscious vision. Moreover, an object''s shape or contour remains invisible without the prior conscious registration of its surface properties, which for that reason are taken to comprise fundamental visual qualia. Besides suggesting avenues for future research, these developments bear on several recent and past philosophical issues.  相似文献   

17.
In measurements of P.D. across the protoplasm in single cells, the presence of parallel circuits along the cell wall may cause serious difficulty. This is particularly the case with marine algae, such as Valonia, where the cell wall is imbibed with a highly conducting solution (sea water), and hence has low electrical resistance. In potential measurements on such material, it is undesirable to use methods in which the surface of the cell is brought in contact with more than one solution at a time. The effect of a second solution wetting a part of the cell surface is discussed, and demonstrated by experiment. From further measurements with improved technique, we find that the value previously reported for the P.D. of the chain Valonia sap | Valonia protoplasm | Valonia sap is too low, and also that the P.D. undergoes characteristic changes during experiments lasting several hours. The maximum P.D. observed is usually between 25 and 35 mv., but occasionally higher values (up to 82 mv.) are found. The appearance of the cells several days after the experiment, and the P.D.''s which they give with sea water, indicate that no permanent injury has been received as a result of exposure to artificial sap. If such cells are used in a second measurement with artificial sap, however, the form of the P.D.-time curve indicates that the cells have undergone an alteration which persists for a long time. On the basis of the theory of protoplasmic layers, an attempt has been made to explain the observed changes in P.D. with time, assuming that these changes are due to penetration of KCl into the main body of the protoplasm.  相似文献   

18.
Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade''s evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.  相似文献   

19.
1. It had been noticed in the previous experiments on the influence of the hydrogen ion concentration on the P.D. between protein solutions inside a collodion bag and aqueous solutions free from protein that the agreement between the observed values and the values calculated on the basis of Donnan''s theory was not satisfactory near the isoelectric point of the protein solution. It was suspected that this was due to the uncertainty in the measurements of the pH of the outside aqueous solution near the isoelectric point. This turned out to be correct, since it is shown in this paper that the discrepancy disappears when both the inside and outside solutions contain a buffer salt. 2. This removes the last discrepancy between the observed P.D. and the P. D. calculated on the basis of Donnan''s theory of P.D. between membrane equilibria, so that we can state that the P.D. between protein solutions inside collodion bags and outside aqueous solutions free from protein can be calculated from differences in the hydrogen ion concentration on the opposite sides of the membrane, in agreement with Donnan''s formula.  相似文献   

20.
SYNOPSIS. The behavior and ultrastructure of Tetrahymena pyriformis was assessed after exposure to dosages of 8 and 16% of the lethal concentration of HgCl2 (TLm 96 hr). The lower dosage caused no abnormal changes in cell motility, activity of the water explusion vesicles, or cell shape; the higher dosage caused deleterious changes in these parameters. The higher sublethal HgCl2 concentration (0.50 mg/liter) elicited damage of several cell structures. This damage persisted and accumulated with time up to 24 hr. At the lower HgCl2 dosage (0.25 mg liter) there were extensive changes after 1-hr exposure involving primarily mitochondria; however, all major changes were repaired after 24 hr of constant exposure to the HgCl2, indicating adaptation to the toxicant. Based solely on cytotoxic evidence an attempt is made to apply the findings defining what constitutes a “safe'’concentration of HgCl2 in the cell's environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号