首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Records of impulses from the lateral-line nerves of catfish show that the lateral-line organs are in a state of continuous activity, producing a massive discharge of impulses. 2. The discharge may be increased during the direct application of pressure on the skin over the lateral-line canal, by ripples in the water, by irregular currents of water, and by movements of the fish''s trunk. 3. The asynchronously discharging lateral-line organs respond to vibratory stimuli from tuning-forks by getting into phase with each other and by beating synchronously at frequencies ranging from 20 to 70 per second. The frequency of beating for a given preparation is independent of the frequency of the tuning-fork for the fork frequencies of 100, 200, and 250 double vibrations which were used. 4. The continuous discharge of the lateral-line system is markedly changed by alteration of temperature. The frequency declines on lowering the temperature and rises on increasing it. Spinal and facial nerves in the catfish fail to yield nerve impulses in response to changes of the skin temperature between 0° and 28°C., although the intact animal is known to be sensitive to temperature differences. 5. The action of the lateral-line system of Ameiurus in inhibiting responses initiated through the skin and ears (Parker and Van Heusen, 1917) is discussed in the light of the present experiments.  相似文献   

2.
The spontaneous discharge of impulses from the lateral-line nerves of trout and catfish has been examined. 1. Broken endings of nerve fibers supplying receptors of the lateral-lines of trout and catfish may be the source of a repetitive discharge of nerve impulses. 2. This injury discharge occurs more frequently in trout and may mask the spontaneous discharge from the receptor cells. Experiments indicate that the latter discharge is not the result of injury. 3. The injury discharge ceases in from 10 to 15 minutes. The spontaneous receptor discharge in trout may continue for an hour if the circulation remains intact. The receptor response also fails in from 10 to 15 minutes after failure of the circulation. 4. The receptor discharge, the injury discharge, or the summed discharges frequently become synchronized. The excitability of the fibers of the nerve trunk appears to vary synchronously, so that nerve impulses initiated in fibers from tactile receptors not contributing to the spontaneous discharge can be conducted only during the part of the cycle occupied by the spontaneous discharge.  相似文献   

3.
Light and electron microscopic observations of the lateral-line organs of larval Ichthyophis kohtaoensis confirmed earlier reports of the occurrence of two different types of lateral-line organs. One type, the ampullary organ, possesses 15–26 egg-shaped sensory cells. Each sensory cell extends a single kinocilium surrounded by a few microvilli into the ampullary lumen. This is in contrast to the ampullary organs of urodele amphibians that contain only microvilli. The second type of organ, the ordinary neuromast, has 15–24 pear-shaped sensory cells arranged in two to three rows. Each sensory cell shows a kinocilium that is asymmetrically placed with respect to both a basal plate and approximately 60 stereovilli. The sensory cells of ampullary organs are always separated by supporting cells; those of neuromasts are occasionally in contact with one another. Numerous (neuromasts) or few (ampullary organs) mantle cells separate the organs from the epidermal cells. Only afferent synapses are found in the ampullary organs whereas vesicle-filled fibers together with afferent nerve terminals are found in neuromasts. Both organs contain similarly sized presynaptic spheres adjacent to the afferent fibers. It is suggested that the neuromasts have a mechanoreceptive function, whereas the ampullary organs have an electroreceptive one.  相似文献   

4.
Siren intermedia is peculiar in that the lateral-line system is retained throughout life, even though the animal is forced into terrestrial situations during aestivation. The lateral-line system is constructed of neuromasts arranged in pit fields instead of pit lines as in most amphibians. The neuromasts are unusual, because the sense cells are arranged in a single row through the long axis of the organ and a few of the sustentacular cells contain “orange granules.” During aestivation, the neuromasts are either shielded by a secreted cocoon, or occluded by proliferated skin epithelium. Those organs occluded by epithelium undergo dedifferentiation which continues through postaestivation. Loss of the lateral-line system by amphibians was apparently late in amphibian evolution. Gradual loss of the system suggests that retention and/or protection of the lateral-line system proved maladaptive and physiologically too expensive. Thus the system was abandoned by most amphibian taxa at metamorphosis.  相似文献   

5.
Records of spontaneous discharge of nerve impulses, similar to that previously described in catfish and in trout, have been obtained from lateral-line nerves of goldfish and perch, by the use of concentric micro electrodes slipped under the nerve in situ. These impulses have been followed into the central nervous system. They enter the tuberculum acusticum and thence apparently spread diffusely through the cerebellum. Cutting the lateral-line nerve on one side silences the ipsilateral tuberculum acusticum, but only reduces the intensity of ipsilateral cerebellar activity. Cutting the remaining lateral-line nerve silences activity throughout the tuberculum acusticum and the cerebellum. The maintenance of tonic activity in the tuberculum acusticum by way of lateral-line discharge may account for the inhibitory effects of the lateral-line system on auditory responses.  相似文献   

6.
The pattern of lateral-line afferents in urodeles   总被引:2,自引:0,他引:2  
Summary The organization of posterior and anterior afferents of the lateralline system was studied in several species of urodeles by means of transganglionic transport of horseradish peroxidase. The afferents of each lateral-line nerve form distinct fascicles in the medullary alar plate. Each of the two branches of the anterior lateral-line nerve is organized in two long and one short fascicles. The posterior lateral-line afferents form only two long fascicles. Each ordinary neuromast is supplied by only two afferents, which run in the two ventral medullary fiber bundles. It is suggested that afferents to hair cells displaying one type of polarity form together one bundle, but those contacting hair cells polarized in the opposite way form the second ventral bundle of one lateral-line branch. Thus, the lateral-line afferents may be organized in a directotopic fashion.The short dorsal fascicle formed only by the anterior lateral-line afferents receives fibers exclusively from small pit organs. Each pit organ is supplied by only one afferent. Anatomically, these pit organs resemble in many respects the electroreceptive ampullary organs of certain fish.Neurons labeled retrogradely via the anterior lateral-line nerve afferents have been attributed to the nervus trigeminus or facialis. In addition to the posterior lateral-line afferents, only few centrifugally projecting neurons were labeled. These neurons are discussed as efferents to the posterior lateral-line neuromasts.  相似文献   

7.
The lateral line system of axolotls (Ambystoma mexicanum) consists of mechanoreceptive neuromasts and electroreceptive ampullary organs. All neuromasts in salamanders are located superficially and are organized into lines that are homologous to canal neuromasts in fishes. Ampullary organs are confined to the head and generally are located adjacent to the lines of superficial neuromasts. Axolotls, however, also possess a third class of receptors; these form restricted patches on the head and are possibly homologous to the superficial pit organs in fishes. In order to test this hypothesis the morphology of the suspected pit organs was examined with scanning electron microscopy, and a number of their physiological properties were determined. Pit organs are approximately half the size of neuromasts and have fewer hair cells, although these hair cells do possess kinocilia and stereocilia like those of neuromasts. Pit organs also possess cupulae and exhibit a pattern of innervation identical to that of neuromasts. Pit organs and neuromasts also exhibit similar rates of spontaneous activity, are excited by weak water currents but not weak electric stimuli, and are not inhibited by magnesium ions. Pit organs appear to have slightly lower rates of spontaneous discharge than neuromasts, however, and have slightly lower displacement thresholds to low frequency wave stimuli. These data support the contention that the pit organs of axolotls constitute a second class of neuromasts homologous to the pit organs of fishes.  相似文献   

8.
Lamprey metamorphosis leads to considerable changes in morphology and behavior. We have recently reported that larval lampreys possess a functional lateral line system. Here we investigated metamorphic morphological changes in the lateral line system using light and electron microscopy. Functional modifications were studied by recording the trunk lateral line nerve activity of larvae and adults while stimulating neuromasts with approximately sinusoidal water motion. We found a general re-patterning of neuromasts on the head and trunk including an increase in numbers, redistribution within the pit lines, and shifts of the pit lines relative to external features. The trunk lateral line nerve response was qualitatively similar in adults and larvae. Both showed two neuronal populations responding to opposite directions of water flow. Magnitude of the response increased monotonically with stimulus amplitude. At low frequencies, the response lag relative to the stimulus maximum was approximately 220°, and the gain depended approximately linearly on frequency, confirming that superficial neuromasts are velocity detectors. Changes in phase lag with increasing stimulus frequency were steeper in larvae, suggesting slower afferent conductance. The response gain with frequency was smaller for adults, suggesting a narrower frequency discrimination range and decreased sensitivity. These changes may be adaptations for the active lifestyle of adult lampreys.  相似文献   

9.
Fish acquire information about their aquatic environment by means of their mechanosensory lateral-line system. This system consists of superficial and canal neuromasts that sense perturbations in the water surrounding them. Based on a hydrodynamic model presented here, we propose a mechanism through which fish can localize the source of these perturbations. In doing so we include the curvature of the fish body, a realistic lateral line canal inter-pore distance for the lateral-line canals, and the surface boundary layer. Using our model to explore receptor behavior based on experimental data of responses to dipole stimuli we suggest that superficial and canal neuromasts employ the same mechanism, hence provide the same type of input to the central nervous system. The analytical predictions agree well with spiking responses recorded experimentally from primary lateral-line nerve fibers. From this, and taking into account the central organization of the lateral-line system, we present a simple biophysical model for determining the distance to a source.  相似文献   

10.
半滑舌鳎侧线器官和无眼侧皮肤表面的特殊结构   总被引:2,自引:0,他引:2  
马爱军  王新安  庄志猛 《动物学报》2007,53(6):1113-1120
为了解决半滑舌鳎的摄食难题,探讨其摄食机理,本文采用光镜和扫描电镜手段对半滑舌鳎有眼侧侧线管和无眼侧皮肤表面的特殊结构进行了研究。结果表明(1)有眼侧:半滑舌鳎侧线孔圆形,孔径与所在部位侧线管径相同,孔上并连有一胶质管,这种特殊结构既可以提高管道内感觉器官(管道神经丘)的敏感性,又可阻止外界异物进入侧线管内部,具有保护作用;半滑舌鳎口腔附近的侧线管管径及侧线孔孔径较其它部位大,侧线孔密度高,认为口腔附近侧线管道内的感觉器官(管道神经丘)的敏感性较其它部位高,在鱼类捕食行为中具有重要作用;(2)无眼侧:躯干部表面覆盖圆鳞,头部皮肤无鳞,表面被覆相互连结的黏液管,形成黏液管皮肤;极其发达的黏液管构成管状黏液分泌系统。扫描电镜观察发现,在头部黏液管皮肤表面镶嵌着一种乳头状突起(Pailla),其典型特征是在表面被覆一盾牌状结构,一般多个簇生在一起,很少单独存在,其分布密度是从吻端向内逐渐减少,组织切片显示内部结构周边是套细胞,中央是感觉细胞,具一柄或两柄。根据其外部形态和内部结构,作者推测,这可能是半滑舌鳎特有的一种触觉器官,并在其摄食行为中起重要作用。半滑舌鳎极其发达的黏液分泌系统对于裸露的乳头状突起(Pailla)具有相当重要的保护作用。  相似文献   

11.
The lateral-line system of the subadult and adult Neurergus crocatus crocatus Cope is retained throughout the life. It is constructed of pear-shaped sense organs or neuromasts which in the subadults are confined entirely to the epidermis with their apices opening distally to the exterior at the general level of the epidermal surface whereas in the adults they are embedded proximally more than halfway in the dermis with their distal apices opening into shallow grooves slightly below the regular epidermal surface. Dimensional differences are also observed between these organs in both stages. The neuromasts are constructed of 4 distinct cell types: sense cells, basal cells, sustentacular cells and mantle cells. These cells differ morphologically, structurally, topographically and functionally. The sense cells are clup-shaped, sensory, central in position and couched among the extremely elongated supporting basal and sustentacular cells, all of which are covered laterally by the extremely slender protective mantle cells. In both the mature and larvae, differences are observed among these cells in their size, number, location and arrangement. The sense organs are richly-supplied and well-nourished with vascular and nervous supplies.  相似文献   

12.
Primary afferent neurons of the lateral-line mechanosensory organs, which are believed to be closely related to the auditory and vestibular organs, exhibit "spontaneous" action potentials in the absence of mechanical stimulation of the receptor cells (hair cells). Sinusoidal mechanical stimulation of the hair cells enhances the impulse rate of the afferent neurons. The spontaneous activity is found to be a decreasing function of increasing concentration of either external magnesium or calcium, when each cation is varied in the absence of the other and bath-applied to the synaptic side of the lateral-line mechanoreceptors. One mM to 6 mM magnesium with 5 mM EGTA (the latter for chelation of remaining traces of calcium) permits undiminished spontaneous afferent activity of lateral-line neurons for as long as 3 to 4 hours. With bath-applied calcium, mechanical stimulation results in evoked incremental activity--defined as total activity with stimulation minus spontaneous activity--which significantly increases with increasing calcium concentration. However, with magnesium and EGTA in the bath, mechanical stimulation produces no increase in the neural firing rate above spontaneous rate for any magnesium concentration tested. Taken together, these results suggest that spontaneous activity, in contrast to evoked incremental activity, does not require external calcium in the bath, and production of spontaneous neural action potentials may proceed via mechanisms that are modifications of those of classical stimulus-secretion coupling.  相似文献   

13.
Summary The octavo-lateral efferent system of several anuran species was studied by means of retrograde transport of horseradish peroxidase. This system is organized similarly in all larval anurans and in all adult aglossids. All have two groups of efferent neurons in the nucleus reticularis medialis between the VIIIth and the IXth motor nucleus. The caudal group consists of efferent neurons that supply the posterior lateral-line nerve (NLLp) and a considerably smaller group of neurons supplying both the NLLp and the anterior lateral-line nerve (NLLa). The rostral group is composed of efferent neurons supplying the NLLa, neurons projecting to the inner ear and neurons supplying both the inner ear and the NLLa. Efferent neurons of the VIIIth cranial nerve exhibit a rostrocaudal cytoarchitectonic differentiation. Caudal perikarya, which are rounder in shape than those of the rostral part, have a dendritic projection to the superior olive. It is suggested that this differentiation reflects a functional differentiation of acoustic and vestibular efferent neurons.Labeled neurons were ipsilateral to the site of application of HRP. None were found in the vestibular nuclei or in the cerebellum.Efferent axons projecting to neuromasts of the NLLa leave the medulla with the VIIth nerve, axons projecting to neuromasts of the NLLp exit via the IXth nerve. Cell counts and the observation of axonal branching revealed that efferent units of both the lateral-line and the VIIIth-nerve system supply more than one receptor organ. In contrast to the lateral-line system, dendrites of efferent neurons of the VIIIth nerve project dorsally onto its nuclei, and afferents of the VIIIth nerve project onto efferent neurons. These structures most probably represent a feedback loop between the afferent and efferent systems of the VIIIth cranial nerve.  相似文献   

14.
Examination using light and transmission electron microscopy showed that each superficial neuromast of the New Zealand sole, Peltorhamphus novaezeelandiae , consists of a typical sensory epithelium lying between two epidermal lappets. The neuromasts occur both singly and in rows over the head and along and above the lateral-line on the body. As well as variation in the shape of the lappets and the size of the organs from different areas of the fish, there is a marked difference between their distribution on the left and right sides. It is suggested that the lapperts may improve the directional sensitivity of the neuromasts, or alternatively, that their function may be purely protective. The possibility is discussed that variation in the size and form of the organs reflects functional differences.  相似文献   

15.
The present paper clarifies the initial development of the lateral line organs in the embryonic Japanese flounder, Paralichthys olivaceus. The first appearances of lateral line primordia, and the proliferation, distribution and morphological development of the free neuromasts, including nerve ending formation: establishment of hair cell innervations via the formation of synapses, were examined by light microscopy, scanning and transmission electron microscopy. The first pair of neuromast primordia appeared in the otic region ≈ 30 h prior to hatching and subsequently differentiated into free neuromasts, otic neuromasts, after ≈ 8 h. At hatching, a pair of free neuromasts and three pairs of neuromast primordia were present on the head, and three pairs of neuromast primordia were present on the trunk. The hair cell polarity of the otic neuromast until just prior to hatching was radial, but not bi‐directional. The typical afferent and efferent nerve endings in the otic neuromasts had formed by the time of hatching, suggesting that the otic neuromasts are functional prior to hatching. The three neuromast primordia located on each side of the trunk were derived from a long, narrow ectodermal cell cluster and erupted through the epidermis after hatching.  相似文献   

16.
Abstract The morphology of the lateral-line system of the nine-spined stickleback (Pungitius pungitius) and the three-spined stickleback (Gasterosteus aculeatus) has been studied. In the nine-spined stickleback, a preopercular, infraorbital, supraorbital, postotic and peduncular canal can be identified on both sides of the body. Replacement lines are found as a continuation of the preopercular and infraorbital canal. In addition, lines of free neuromasts are found on the mandible and trunk. An accessory line is present above and below the peduncular canal. The presence of both canals and accessory lines on the peduncle suggests that the peduncle in this species has important sensory functions. No canals are found in the three-spined stickleback. Instead, replacement lines corresponding to the canals can be identified on the head. Accordingly, the lateral-line system of the three-spined and the nine-spined stickleback has a different structure. The lateral-line system of both species shows signs of specialization but the three-spined stickleback has a more specialized lateral-line system than the nine-spined stickleback.  相似文献   

17.
Summary The activities of single afferent fibers were recorded in the trunk lateral line nerve of the cichlid fishSarotherodon niloticus L. Using both electrophysiological recordings and neuroanatomical tracing techniques, the number, arrangement, and innervation of superficial (SNs) and canal (CNs) neuromasts were determined. Both, SNs and CNs, are innervated by several afferent fibers of different diameters and efferent fibers. The CNs and SNs are neuronally separated: afferent fibers which innervate both CNs and SNs were not found. Whereas the single CN is innervated by a separate set of afferent fibers, fibers innervating the SNs within rows often branched to reach all or several SNs. The SNs within a row were thus considered to form a functional unit. With the exception of SNs on the tail fin, functional units of neuromasts were in general topographically restricted to single scales.The majority of lateral line units had resting activity. On the basis of the time interval distribution of the resting activity, 4 types of units were classified: these were labelled irregular (type I), regular (type II), bimodal (type III) and silent (type IV). Type I was the most common type of resting activity (obtained in 47.8% of the recorded units). Units with this resting activity type were identified as afferents innervating either SNs or CNs. Units with resting activity of type II represented mostly afferents of CNs if their mean activity was high (around 40 imp/s). If the mean activity of this type was below 20 imp/s the units were unresponsive to local water movements and at least some were identified as efferent fibers. Resting activity of type III was found only in units originating from CNs. Only 4% of the units were silent (type IV). These units were often identified as injured neuromasts. Units originating from CNs show higher mean resting activity than those from SNs. For both SN and CN units, the mean discharge rate of the resting activity correlated with the sensitivity to stimulation for sinusoidal water movements.During stimulation of the neuromasts by sinusoidal water movements of small amplitude and different frequencies, the response characteristics of SN and CN units were determined by linear frequency analysis under steady state conditions. Most units responded linearly to small stimulus amplitudes. In this amplitude range the units' resting activity was modulated according to the stimulus frequency. Small stimulus amplitudes proportionally changed the amount of modulation but did not alter the phase of the response. CN and SN units that responded linearly produce differing frequency responses. Whereas CNs were most sensitive at frequencies of up to 200 Hz (center frequencies between 100 and 200 Hz), the center frequencies of SNs were distributed between 10 and 70 Hz with a maximum number at about 30 Hz. Bode plots for many CN and SN units indicated that the neuromasts were sensitive to the acceleration component of the water movement.The functional significance of the differences between the two types of lateral line neuromasts (SNs and CNs) were discussed.Abbreviations SN superficial neuromast - CN canal neuromast  相似文献   

18.
中国大鲵侧线器官的研究   总被引:1,自引:0,他引:1  
程红  黄世强 《动物学报》1995,41(3):235-242
本文以光镜和扫描是镜手段研究了中国大鲵幼体,亚成体及成体头部及躯干部表皮中的侧线器官,即电接受壶腹器官,机械接受的表面神经丘和陷器官的分布,形态和发展变化。壶腹器管仅存于幼体头部,变态结束后消失,后两种终生存在,但前者按一定路线和方向排列,后者仅存于头部,陷在表皮中,文章探讨了壶腹器官的原始性,其消失与生活习性以及由水登陆进化的关系;对三种器官的形态及其它有尾类的侧线器官进行了比较。  相似文献   

19.
The lateral-line system is a unique facility of aquatic animals to locate predator, prey, or conspecifics. We present a detailed model of how the clawed frog Xenopus, or fish, can localize submerged moving objects in three dimensions by using their lateral-line system. In so doing we develop two models of a slightly different nature. First, we exploit the characteristic properties of the velocity field, such as zeros and maxima or minima, that a moving object generates at the lateral-line organs and that are directly accessible neuronally, in the context of a simplified geometry. In addition, we show that the associated neuronal model is robust with respect to noise. Though we focus on the superficial neuromasts of Xenopus the same arguments apply mutatis mutandis to the canal lateral-line system of fish. Second, we present a full-blown three-dimensional reconstruction of the source on the basis of a maximum likelihood argument.  相似文献   

20.
刺激家兔肾内感受器的传入神经活动观察   总被引:4,自引:2,他引:2  
马戈  何瑞荣 《生理学报》1990,42(3):269-276
在44只麻醉家兔观察肾机械和化学感受器刺激对肾传入神经放电活动的影响。结果如下:(1)输尿管压增高20.20±1.09mmHg 引起肾传入神经放电的积分值增加175.13±22.41,(P<0.001)。(2)经输尿管向肾盂内逆向灌注0.15mol/L KCl 和 1mol/L NaCl 溶液时,肾传入神经放电积分值分别增加253.79±21.64%和172.17±15.19%(P<0.001)。(3)肾传入神经纤维的单位放电至少有四种类型:无自发放电活动,自发规则放电,自发规则的猝发放电和不规则放电。(4)输尿管压增高可诱发无自发活动的肾传入神经出现明显的放电,而有自发放电的单位对此种刺激不敏感。(5)向肾盂内逆向灌流0.15mol/L KCl 和1mol/L NaCl 溶液时,肾传入神经自发放电单位的电活动分别增加210.70±23.40%,6和140.07±15.72%(P<0.001),并有新的单位被激活。(6)夹闭肾动脉可诱发无自发活动的肾传入神经单位的放电活动。以上结果提示,家兔肾脏内存在机械和 R_1, R_2化学感受器,分别感受输尿管压、肾缺血和肾盂浸浴液中 Na~+,K~+浓度的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号