首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. After a discussion of the sources of error involved in the study of dark adaptation, an apparatus and a procedure are described which avoid these errors. The method includes a control of the initial light adaptation, a record of the exact beginning of dark adaptation, and an accurate means of measuring the threshold of the fovea after different intervals in the dark. 2. The results show that dark adaptation of the eye as measured by foveal vision proceeds at a very precipitous rate during the first few seconds, that most of the adaptation takes place during the first 30 seconds, and that the process practically ceases after 10 minutes. These findings explain much of the irregularity of the older data. 3. The changes which correspond to those in the fovea alone are secured by correcting the above results in terms of the movements of the pupil during dark adaptation. 4. On the assumption that the photochemical effect of the light is a linear function of the intensity, it is shown that the dark adaptation of the fovea itself follows the course of a bimolecular reaction. This is interpreted to mean that there are two photolytic products in the fovea; that they are disappearing because they are recombining to form anew the photosensitive substance of the fovea; and that the concentration of these products of photolysis in the sense cell must be increased by a definite fraction in order to produce a visual effect. 5. It is then suggested that the basis of the initial event in foveal light perception is some mechanism that involves a reversible photochemical reaction of which the "dark" reaction is bimolecular. Dark adaptation follows the "dark" reaction; sensory equilibrium is represented by the stationary state; and light adaptation by the shifting of the stationary state to a fresh point of equilibrium toward the "dark" side of the reaction.  相似文献   

2.
 通过测定西双版纳热带雨林冠层树种绒毛番龙眼(Pometia tomentosa)完全伸展嫩叶和成熟叶的叶片解剖、生理特征和雨季晴天自然条件下叶绿素a荧光以及午间强光对部分保护酶活性和膜脂过氧化作用的影响,探讨了两种不同发育阶段叶片光合作用的光抑制与强光和温度的关系。结果表明:绒毛番龙眼全展嫩叶和成熟叶表现出明显的解剖和生理特征差异。与全展嫩叶相比,成熟叶的叶片较厚、叶绿素含量高、气孔导度大、羧化效率高、最大净光合速率和光饱和点高,而气孔密度和保卫细胞长度没有显著差别。在雨季晴天自然条件下,午间最高光强可达2 200 μmol·m-2·s-1以上,最高叶温比气温高7~8 ℃,而成熟叶片的最高温度比全展嫩叶高1.5~2 ℃。上午随光强的增大,两种叶片的非光化学猝灭系数(NPQ)增大,PSⅡ原初光化学效率(Fv/Fm)、实际光化学效率[(Fm′_Fs)/Fm′]逐渐减小,在15∶30左右达最小。下午随着光强的减弱,Fv/Fm逐渐恢复,在傍晚基本恢复到清晨值。初始荧光(F0)在一天中变化很小。这表明绒毛番龙眼叶片光抑制是非辐射能量耗散增加引起的保护光合机构免受光破坏的保护性反应,而非光破坏。全展嫩叶比成熟叶有较低的光化学效率和非辐射耗散能力,对强光和高温处理的敏感性也较强,但在自然条件下一天中的光抑制程度与成熟叶没有显著差别。田间午间强光导致两种叶片的保护酶活性(超氧化物歧化酶,SOD;抗坏血酸过氧化物酶,APX)升高,而H2O2含量变化较小。其中,全展嫩叶的保护酶活性高,丙二醛(MDA)含量低。这表明自然条件下,与成熟叶相比,绒毛番龙眼全展嫩叶通过较低的光能利用效率、较低的叶温和高的保护酶活性减轻了强光高温的光抑制程度。  相似文献   

3.
1. The negative phototropism of certain land isopods was investigated over a large range of intensities, especially low ones. The responses were determined quantitatively by measuring the angle through which an animal turned away from a line perpendicular to the rays of light. 2. In the absence of light the undirected movements set up by obscure stimuli were such as to compensate each other statistically, the average path being a movement in the direction in which the animal was headed. 3. Over a large range of intensities (0.0026 m.c. up) the average turning is maximal, about 55° (Oniscus). This maximal response is due to an anatomical peculiarity, in that the carapace cuts off the light on the eye after the animal has turned 50–60°. This peculiarity probably accounts for specific differences among land isopods. Any light, therefore, which is strong enough to turn an animal through this maximal angle in a radial distance of 10 cm. will give results whose mean will be maximal. 4. Below 0.0026 m.c. the amount of angular deflection becomes less and less, in proportion to the logarithm of the intensity, until at 0.00003 m.c. the movements are the same as in darkness. 5. This proportionality between amount of turning and the logarithm of the intensity indicates the photochemical nature of phototropism on the basis of Hecht''s work with Mya. As a result, Loeb''s theory of phototropism may then be stated in the mathematical form See PDF for Equation in which I 1 and I 2 are the two intensities, E 1 and E 2, their respective effects, and R, the muscular action set up by the difference in photochemical effect on the two sides.  相似文献   

4.
In the four-celled antheridium of the fern species Onoclea sensibilis a central spermatogenous cell is enveloped by a jacket of three cells. Starting from the base, the jacket comprises the cup-shaped basal cell, the ring cell—both of which encircle the spermatogenous cell—and the cap cell. The lower wall of the spermatogenous cell has the configuration of a funnel; its upper wall is dome shaped. The choice of whole antheridia for study instead of sectioned ones has, for the first time, made it possible to study the formation of the uniquely shaped antheridial cell plates step by step. The cell plate antecedent of the funnel wall has the configuration of a funnel. This conclusion conflicts with Davie's contention that this cell wall is oriented transversely at first and acquires funnel-shape secondarily. The present studies further show that the funnel cell plate forms from base to rim. This finding contrasts with a report that in another fern species this cell plate begins to form on one side of the initial and then proceeds circularly around it. The base of the funnel cell plate attaches to the basal wall of the antheridium initial in a separate event. The genesis of the dome-shaped upper wall of the spermatogenous cell is described for the first time.  相似文献   

5.
1. Data are presented for the dark adaptation of four species of animals. They show that during dark adaptation the reaction time of an animal to light of constant intensity decreases at first rapidly, then slowly, until it reaches a constant minimum. 2. On the assumption that at all stages of adaptation a given response to light involves a constant photochemical effect, it is possible to describe the progress of dark adaptation by the equation of a bimolecular reaction. This supposes, therefore, that dark adaptation represents the accumulation within the sense cells of a photosensitive material formed by the chemical combination of two other substances. 3. The chemical nature of the process is further borne out by the fact that the speed of dark adaptation is affected by the temperature. The velocity constant of the bimolecular process describing dark adaptation bears in Mya a relation to the temperature such that the Arrhenius equation expresses it with considerable exactness when µ = 17,400. 4. A chemical mechanism is suggested which can account not only for the data of dark adaptation here presented, but for many other properties of the photosensory process which have already been investigated in these animals. This assumes the existence of a coupled photochemical reaction of which the secondary, "dark" reaction is catalyzed by the products of the primary photochemical reaction proper. This primary photochemical reaction itself is reversible in that its main products combine to form again the photosensitive material, whose concentration controls the behavior of the system during dark adaptation.  相似文献   

6.
The PSII photochemical activity in a terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault during rewetting was undetectable in the dark but was immediately recognized in the light. The maximum quantum yield of PSII (Fv/Fm) during rewetting in the light rose to 85% of the maximum within ~30 min and slowly reached the maximum within 6 h, while with rewetting in the darkness for 6 h and then exposure to light the recovery of Fv/Fm required only ~3 min. These results suggested that recovery of photochemical activity might depend on two processes, light dependence and light independence, and the activation of photosynthetic recovery in the initial phase was severely light dependent. The inhibitor experiments showed that the recovery of Fv/Fm was not affected by chloramphenicol (CMP), but severely inhibited by 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) in the light, suggesting that the light‐dependent recovery of photochemical activity did not require de novo protein synthesis but required activation of PSII associated with electron flow to plastoquinone. Furthermore, the test indicated that the lower light intensity and the red light were of benefit to its activation of photochemical activity. In an outdoor experiment of diurnal changes of photochemical activity, our results showed that PSII photochemical activity was sensitive to light fluctuation, and the nonphotochemical quenching (NPQ) was rapidly enhanced at noon. Furthermore, the test suggested that the repair of PSII by de novo protein synthesis played an important role in the acclimation of photosynthetic apparatus to high light, and the heavily cloudy day was more beneficial for maintaining high photochemical activity.  相似文献   

7.
1. A study of the historical development of the Weber-Fechner law shows that it fails to describe intensity perception; first, because it is based on observations which do not record intensity discrimination accurately, and second, because it omits the essentially discontinuous nature of the recognition of intensity differences. 2. There is presented a series of data, assembled from various sources, which proves that in the visual discrimination of intensity the threshold difference ΔI bears no constant relation to the intensity I. The evidence shows unequivocally that as the intensity rises, the ratio See PDF for Equation first decreases and then increases. 3. The data are then subjected to analysis in terms of a photochemical system already proposed for the visual activity of the rods and cones. It is found that for the retinal elements to discriminate between one intensity and the next perceptible one, the transition from one to the other must involve the decomposition of a constant amount of photosensitive material. 4. The magnitude of this unitary increment in the quantity of photochemical action is greater for the rods than for the cones. Therefore, below a certain critical illumination—the cone threshold—intensity discrimination is controlled by the rods alone, but above this point it is determined by the cones alone. 5. The unitary increments in retinal photochemical action may be interpreted as being recorded by each rod and cone; or as conditioning the variability of the retinal cells so that each increment involves a constant increase in the number of active elements; or as a combination of the two interpretations. 6. Comparison with critical data of such diverse nature as dark adaptation, absolute thresholds, and visual acuity shows that the analysis is consistent with well established facts of vision.  相似文献   

8.
1. In order to produce a response in Mya, the minimum amount of light energy required is 5.62 meter candle seconds. This energy follows the Bunsen-Roscoe law for the relation between intensity and time of exposure. 2. The necessary minimum amount of energy varies but little with the temperature; the temperature coefficient for 10°C. is 1.06. 3. In view of these facts it is concluded that the initial action of the light is photochemical in nature. This substantiates the hypothesis previously suggested to account for the mechanism of photoreception. 4. The constant energy requirement for stimulation of Mya shows that the traditional division of animals into those which respond to a constant source of light and those which respond to a rapidly augmented light is without any fundamental significance for sensory physiology.  相似文献   

9.
1. Experiments on the heliotropic orientation of Limulus were made which confirmed Loeb''s photochemical theory of animal heliotropism proposed first in 1888 and 1889 in experiments on insects, and later in experiments on other forms of animals. 2. It is shown that these animals are oriented by light in such a way that the product I x t x cos α is the same for the symmetrical photosensitive elements of the eyes or the skin, where I is the intensity of the light, t the duration of illumination, and α the angle of incidence of the light at the surface element of the photosensitive organ. 3. When this equation holds, the products of decomposition by light must be the same in symmetrical elements of the eyes or skin, and the influence of these products of decomposition on the tension of symmetrical muscles of the locomotor organs of the animal must be the same. As a consequence the animal must move in the path of light, either to or from the source of light.  相似文献   

10.
A heterogeneous photochemical electron relay system was constructed, mimicking the chloroplast electron transport reaction in order to activate the NADP-malate dehydrogenase in light. The photocatalyst acridine orange or proflavin sensitized EDTA-dependent reduction of ferredoxin. In a complete system, consisting of a dye donor couple, ferredoxin, thioredoxin and ferredoxin-thioredoxin reductase, light activation of purified NADP-MDH was observed in vitro. The chloroplast mediated redox activation of enzyme essentially required ferredoxin, while heterogeneous photochemical mediated activation of enzyme need not require ferredoxin. The heterogeneus photochemical system activated NADP-MDH by eight fold similar to chloroplasts mediated ferredoxin dependent redox activation but was not affected by the presence of disalicylinden propanediamine-1, 2-disulphonic acid while there was complete inhibition of chloroplasts mediated activation of NADP-MDH in presence of this inhibitor. These observations suggest that a thiol mediator is essential for reductive activation of NADP-MDH and ferredoxin is not required for photochemical activation.  相似文献   

11.
The influence of periodic salinity changes was investigated for 42 days under semicontinuous culture conditions with phosphorus limitation using phytoplankton assemblages from Lake Waihola, a tidally influenced shallow lake. To simulate tidal effects on the phytoplankton community, salinity in the cultures was increased in pulses at different intervals (3.5, 7, and 14 days), and these cultures were compared with those that experienced constant freshwater conditions. Salinity pulses significantly affected competition and succession with a major loss in diversity during the first days of the experiment due to the initial pulse that caused a transition from freshwater to brackish conditions in the cultures. After this initial phase, diversity index (H') and species number (Scorr) decreased less rapidly. The loss in H' and Scorr over time was highest under constant freshwater conditions and lowest in the treatment with an interval of 3.5 days between salinity pulses. At the end of the experiment, the combination of initial loss in H' and Scorr and the time course of H' and Scorr resulted in a U‐shaped relation between the interval length of salinity pulses and both H' and Scorrtemp1.txttemp1.txt. Our results indicate that salinity pulses at intervals of a few days tend to promote phytoplankton diversity. If saline intrusions in coastal freshwater systems occur only at spring tides, this will lead to decreases in diversity and species richness.  相似文献   

12.
1. Experiments are presented which show that the latent period in the photosensory response of Ciona is inversely proportional to the duration of the exposure period to light. From this it is found that the velocity of the chemical reaction which determines the latent period is directly proportional to the concentration of photochemical products formed during the exposure period. This is interpreted as showing that the two processes form a coupled photochemical reaction, of which the secondary reaction proceeds only in the presence of products from the primary reaction. This coupling may be a catalysis or a direct chemical relation. 2. Further experiments show that the relation between temperature and the latent period is accurately described by the Arrhenius equation in which µ = 16,200. The precise numerical value of µ tentatively identifies the latent period process as an oxidation reaction which is catalyzed by iron. 3. The photocatalytic properties of certain iron compounds are used as a model for the coupled photochemical reaction suggested for the photosensory mechanism of Ciona and Mya.  相似文献   

13.
Resonance Raman multicomponent spectra of bovine rhodopsin, isorhodopsin, and bathorhodopsin have been obtained at low temperature. Application of the double beam "pump-probe" technique allows us to extract a complete bathorhodopsin spectrum from the mixture in both protonated and deuterated media. Our results show that the Schiff base of bathorhodopsin is fully protonated and that the extent of protonation is unaffected by its photochemical formation from either rhodopsin or isorhodopsin. The Raman spectrum of bathorhodopsin is significantly different than that of either parent pigment, thus supporting the notion that a geometric change in the chromophore is an important component of the primary photochemical event in vision. A normal mode analysis is carried out with particular attention devoted to the factors that determine the frequency of the C=N stretching vibration. We find that the increased frequency of this mode in protonated relative to unprotonated Schiff bases is due to coupling between C=N stretching and C=N-H bending motions, and the shift observed upon deuteration of the Schiff base can also be understood in these terms. Various models for the primary event are discussed in light of our experimental and theoretical results.  相似文献   

14.
1. Eosin, erythrosin, rose bengale, cyanosin, acridine, and methylene blue act photodynamically on the luminescence of a Cypridina luciferin-luciferase solution. In presence of these dyes inhibition of luminescence, which without the dye occurs only in blue-violet light, takes place in green, yellow, orange, or red light, depending on the position of the absorption bands of the dye. 2. Inhibition of Cypridina luminescence without photosensitive dye in blue-violet light, or with photosensitive dye in longer wave-lengths, does not occur in absence of oxygen. Light acts by accelerating the oxidation of luciferin without luminescence. Eosin or methylene blue act by making longer wave-lengths effective, but there is no evidence that these dyes become reduced in the process. 3. The luciferin-oxyluciferin system is similar to the methylene white-methylene blue system in many ways but not exactly similar in respect to photochemical change. Oxidation of the dye is favored in acid solution, reduction in alkaline solution. However, oxidation of luciferin is favored in all pH ranges from 4 to 10 but is much more rapid in alkaline solution, either in light or darkness. There is no evidence that reduction of oxyluciferin is favored in alkaline solution. Clark''s observation that oxidation (blueing) of methylene white occurs in complete absence of oxygen has been confirmed for acid solutions. I observed no blueing in light in alkaline solution.  相似文献   

15.
The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 +/- 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 +/- 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event.  相似文献   

16.
1. A theory of visual intensity discrimination is proposed in terms of the photochemical events which take place at the moment when a photosensory system already adapted to the intensity I is exposed to the just perceptibly higher intensity II. Unlike previous formulations this theory predicts that the fraction ΔI/I, after rapidly decreasing as I increases, does not increase again at high intensities, but reaches a constant value which is maintained even at the highest intensities. 2. The theory describes quantitatively the intensity discrimination data of Drosophila, of the bee, and of Mya. 3. With some carefully considered exceptions the intensity discrimination data of the human eye fall into two classes: those with small test areas or with red light, which form a single continuous curve describing the function of the retinal cones alone, and those with larger areas, and with white, orange, and yellow light, which form a double curve showing a clear inflection point, and represent the separate function of the rods at intensities below the inflection point and of the cones at intensities above it. 4. The theory describes all these data quantitatively by treating the rods and cones as two independently functioning photosensory systems in accordance with the well established duplicity idea. 5. In terms of the theory the data of intensity discrimination give critical information about the order of both the photochemical and dark reactions in each photosensory system. The reactions turn out to be variously monomolecular and bimolecular for the different animals.  相似文献   

17.
18.
The latent period in the response of Mya to illumination varies inversely as the duration of the exposure to which it is subjected. The reciprocal of the latent period, measuring the velocity of the process which underlies it, is a linear function of the exposure period. Since the duration of the exposure represents the amount of photochemical activity, it is concluded that the substances formed at that time act to catalyze a chemical reaction which determines the duration of the latent period. This explanation is in accord with the previous work on the photochemical reaction and with the effect of temperature on the latent period. As a result of the combined investigations there is presented a concrete hypothesis for the mechanism of photic reception in Mya.  相似文献   

19.
Rapid analytical methods are needed to quantify living microorganisms to determine if ships’ discharged ballast water is in compliance with national and international standards. Traditionally, regrowth assays and microscope counts of stained organisms—which are time-consuming, require expensive equipment, and require extensive staff training—are used to assess microorganisms. The goal of this study was to evaluate other approaches. Both ambient microorganisms from an oligotrophic marine environment and laboratory cultures of marine algae were evaluated following exposure to two types of ballast water treatment: ultraviolet (UV) light and chlorine dioxide (ClO2). Microorganisms in two size classes (<10 and ≥10 to <50 μm) were quantified using regrowth assays and vital staining, and samples were evaluated using two rapid approaches: (1) chlorophyll a fluorescence and photochemical yield were measured using a pulse amplitude modulated fluorometer and (2) the concentration of adenosine triphosphate (ATP) was measured with a handheld luminometer. The response of microorganisms to UV and ClO2 was evident in measurements of photochemical yield, as photochemical yield decreased at high doses. However, initial values of photochemical yield were variable and species-specific. Oddly, in some trials, initial fluorescence increased at intermediate UV doses; this phenomenon could lead to overestimation of total biomass. In samples treated with UV light, ATP was not significantly different among any of the doses used; however, concentrations of ATP were significantly lower at the highest dose of ClO2 than control samples. These results demonstrate that approaches used for ballast water testing can be treatment-specific, and compliance approaches should be validated to determine their utility with the appropriate treatments.  相似文献   

20.
1.. After 2 hours of fermentation in nitrogen the metabolism of those algae which were found capable of photoreduction with hydrogen changes in such a way that molecular hydrogen is released from the cell in addition to carbon dioxide. 2. The amount of hydrogen formed anaerobically in the dark depends on the amount of some unknown reserve substance in the cell. More hydrogen is formed in presence of added glucose, but no proportionality has been found between the amount of substrate added and that of hydrogen formed. This is probably due to the fact that two types of fermentation reactions exist, with little or no connection between them. Whereas mainly unknown organic acids are formed during the autofermentation, the addition of glucose causes a considerable increase in the production of lactic acid. 3. Algae which have been fermenting for several hours in the dark produce upon illumination free hydrogen at several times the rate observed in the dark, provided carbon dioxide is absent. 4. Certain concentrations of dinitrophenol strongly inhibit the evolution of hydrogen in the dark. Fermentation then continues mainly as a reaction leading to lactic acid. In such poisoned algae the photochemical liberation of hydrogen still continues. 5. If the algae are poisoned with dinitrophenol the presence of carbon dioxide will not interfere with the photochemical evolution of hydrogen. 6. The amount of hydrogen released in this new photochemical reaction depends on the presence of an unknown hydrogen donor in the cell; it can be increased by the addition of glucose but not in proportion to the amount added. 7. The results obtained allow for a more correct explanation of the anaerobic induction period previously described for Scenedesmus and similar algae. The possibility of a photochemical evolution of hydrogen had not been taken into account in the earlier experiments. 8. The origin of the hydrogen released under the influence of light is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号