首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The lateral-line nerves of trout as well as those of catfish are found to discharge impulses spontaneously at a high frequency. 2. The frequency of nerve impulse discharge is measured as a function of the number of participating receptor groups (lateral-line sense organs). A quantitative analysis is made of the contribution to the total response made by each group of sense organs. 3. An analysis of the variability of the response is presented which makes it possible to estimate quantitatively the longitudinal extent of damage to the neuromasts due to surgical manipulation. 4. A method is described for recording the response of a single nerve fiber in the lateral-line trunk. 5. The frequency of the spontaneous discharge from the lateral-line nerve trunk when plotted as a function of temperature according to the Arrhenius equation yields a temperature characteristic of approximately 5000 calories. 6. The variability of the frequency of response as a function of temperature indicates the existence of temperature thresholds for the spontaneous activity of the neuromasts. 7. A possible basis for the spontaneous activity is considered. It is pointed out that the lateral-line system may serve as a model of the Purkinje cells of the cerebellum.  相似文献   

2.
Records of spontaneous discharge of nerve impulses, similar to that previously described in catfish and in trout, have been obtained from lateral-line nerves of goldfish and perch, by the use of concentric micro electrodes slipped under the nerve in situ. These impulses have been followed into the central nervous system. They enter the tuberculum acusticum and thence apparently spread diffusely through the cerebellum. Cutting the lateral-line nerve on one side silences the ipsilateral tuberculum acusticum, but only reduces the intensity of ipsilateral cerebellar activity. Cutting the remaining lateral-line nerve silences activity throughout the tuberculum acusticum and the cerebellum. The maintenance of tonic activity in the tuberculum acusticum by way of lateral-line discharge may account for the inhibitory effects of the lateral-line system on auditory responses.  相似文献   

3.
The spontaneous discharge of impulses from the lateral-line nerves of trout and catfish has been examined. 1. Broken endings of nerve fibers supplying receptors of the lateral-lines of trout and catfish may be the source of a repetitive discharge of nerve impulses. 2. This injury discharge occurs more frequently in trout and may mask the spontaneous discharge from the receptor cells. Experiments indicate that the latter discharge is not the result of injury. 3. The injury discharge ceases in from 10 to 15 minutes. The spontaneous receptor discharge in trout may continue for an hour if the circulation remains intact. The receptor response also fails in from 10 to 15 minutes after failure of the circulation. 4. The receptor discharge, the injury discharge, or the summed discharges frequently become synchronized. The excitability of the fibers of the nerve trunk appears to vary synchronously, so that nerve impulses initiated in fibers from tactile receptors not contributing to the spontaneous discharge can be conducted only during the part of the cycle occupied by the spontaneous discharge.  相似文献   

4.
Increase in temperature elicits an increase in the number of nerve impulses arising spontaneously from deafferented crayfish ganglia. This alteration in gross frequency gives an apparent temperature characteristic of 27,000 calories. Changes in the number of active fibers and in the frequency of discharge of individual units account for the alterations in the gross frequency. The change in number of active units gives a n value of 17,500 calories. Individual fibers fall into two groups with respect to the effect of temperature on their frequency of discharge. One of these groups exhibits a µ value of 14,500 calories and the other yields a µ value of 7,000 calories.  相似文献   

5.
Papes S  Ladich F 《PloS one》2011,6(10):e26479

Background

Sound production and hearing sensitivity of ectothermic animals are affected by the ambient temperature. This is the first study investigating the influence of temperature on both sound production and on hearing abilities in a fish species, namely the neotropical Striped Raphael catfish Platydoras armatulus.

Methodology/Principal Findings

Doradid catfishes produce stridulation sounds by rubbing the pectoral spines in the shoulder girdle and drumming sounds by an elastic spring mechanism which vibrates the swimbladder. Eight fish were acclimated for at least three weeks to 22°, then to 30° and again to 22°C. Sounds were recorded in distress situations when fish were hand-held. The stridulation sounds became shorter at the higher temperature, whereas pulse number, maximum pulse period and sound pressure level did not change with temperature. The dominant frequency increased when the temperature was raised to 30°C and the minimum pulse period became longer when the temperature decreased again. The fundamental frequency of drumming sounds increased at the higher temperature. Using the auditory evoked potential (AEP) recording technique, the hearing thresholds were tested at six different frequencies from 0.1 to 4 kHz. The temporal resolution was determined by analyzing the minimum resolvable click period (0.3–5 ms). The hearing sensitivity was higher at the higher temperature and differences were more pronounced at higher frequencies. In general, latencies of AEPs in response to single clicks became shorter at the higher temperature, whereas temporal resolution in response to double-clicks did not change.

Conclusions/Significance

These data indicate that sound characteristics as well as hearing abilities are affected by temperatures in fishes. Constraints imposed on hearing sensitivity at different temperatures cannot be compensated even by longer acclimation periods. These changes in sound production and detection suggest that acoustic orientation and communication are affected by temperature changes in the neotropical catfish P. armatulus.  相似文献   

6.

Background

In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders.

Methodology/Principal Findings

Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average.

Conclusions/Significance

The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species.  相似文献   

7.
1. The durations of successive periods of induced tonic immobility in the lizard Anolis carolinensis was examined as a function of temperature. An automatic recording method was employed and observations were made of 12,000 to 15,000 immobilizations with six animals over a temperature range of 5° to 35°C. during 5 months. 2. The durations of the immobile periods were found to vary rhythmically in most cases. The reciprocal of the duration of the rhythm, i.e., the rate of change of the process underlying the rhythms, when plotted as a function of temperature according to the Arrhenius equation show distributions of points in two straight line groups. One of these groups or bands of points extends throughout the entire temperature range with a temperature characteristic of approximately µ = 31,000 calories, and the other covers the range of 20° to 35°C. with µ equal to approximately 9,000 calories. 3. The initial stimulus in a series of inductions of immobility appears to set off a mechanism which determines the duration of the state of quiescence. Succeeding forced recoveries seem to have no effect on the normal duration of the rhythm. 4. These results are interpreted by assuming the release, through reflex stimulation, of hormonal substances, one effective between 5° and 35°C. and the other effective between 20° and 35°C. These substances are assumed to act as selective inhibitors of impulses from so called "higher centers," allowing impulses from tonic centers to pass to the muscles. 5. In some experiments a progressive lengthening in successively induced periods of immobility was observed. The logarithm of the frequency of recovery when plotted against time in most of these cases (i.e., except for a few in which irregularities occurred) gave a linear function of negative slope which was substantially unaffected by temperature. In these cases it is assumed that a diffusion process is controlling the amount of available A substance. 6. The results are similar to those obtained by Crozier with Cylisticus convexus. The duration of tonic immobility seems to be maintained in both arthropod and vertebrate by the chemical activity of "hormonal" selective inhibitors. The details of the mechanisms differ, but there is basic similarity. 7. Injections of small amounts of adrenalin above a threshold value are found to prolong the durations of tonic immobility of Anolis, by an amount which is a logarithmic function of the "dose." It is possible that internally secreted adrenalin, above a threshold amount, may be involved in the maintenance of tonic immobility. 8. The production of tonic immobility reflexly is a problem distinct from that of the duration of immobility. It is suggested that the onset may be induced by "shock" to the centers of reflex tonus causing promiscuous discharge of these centers with accompanying inhibition of the higher centers. Such a condition may result when an animal is suddenly lifted from the substratum and overturned, or when, as in the case of Anolis, it struggles with dorsum down. This reaction of the "tonic centers" may at the same time lead to discharge of the adrenal glands by way of their spinal connections thus prolonging the state.  相似文献   

8.
The effect of temperature on pulse propagation in biological systems has been an important field of research. Environmental temperature not only affects a host of physiological processes e.g. in poikilotherms but also provides an experimental means to investigate the thermodynamic phenomenology of nerves and muscle. In the present work, the temperature dependence of blood vessel pulsation velocity and frequency was studied in the annelid Lumbriculus variegatus. The pulse velocity was found to vary linearily between 0°C and 30°C. In contrast, the pulse frequency increased non-linearly in the same temperature range. A heat block ultimately resulted in complete cessation of vessel pulsations at 37.2±2.7°C (lowest: 33°C, highest: 43°C). However, quick cooling of the animal led to restoration of regularly propagating pulses. This experimentally observed phenomenology of pulse propagation and frequency is interpreted without any assumptions about molecules in the excitable membrane (e.g. ion channels) or their temperature-dependent behaviour. By following Einstein’s approach to thermodynamics and diffusion, a relation between relaxation time τ and compressibility κ of the excitable medium is derived that can be tested experimentally (for κT ∼ κS). Without fitting parameters this theory predicts the temperature dependence of the limiting (i.e. highest) pulse frequency in good agreement with experimental data. The thermodynamic approach presented herein is neither limited to temperature nor to worms nor to living systems. It describes the coupling between pulse propagation and relaxation equally well in nerves and gels. The inherent consistency and universality of the concept underline its potential to explain the dependence of pulse propagation and relaxation on any thermodynamic observable.  相似文献   

9.
The frequency of pulsation of the intact heart in nymphs (final (?) instar) of Blatta orientalis L. increases with the temperature according to the equation of Arrhenius. The constant µ has typically the same value, within reasonable limits of error, as that (12,200) deduced for other, homologous activities of arthropods where the rate of central nervous discharge is perhaps the controlling element, namely 12,500 ± calories for temperatures 10–38°C. Below a critical temperature of about 10° a change to a higher value of the temperature characteristic occurs, such that µ = 18,100 ±. Exceptionally (one individual) µ = 14,100 ± over the whole range of observed temperature (4.5–28°). The quantitative correspondence of µ for frequency of heart beat in different arthropods adds weight to the conception that this constant may be employed for the recognition of controlling processes.  相似文献   

10.
The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.  相似文献   

11.
Nerve fibers which respond to illumination of the sixth abdominal ganglion were isolated by fine dissection from connectives at different levels in the abdominal nerve cord of the crayfish. Only a single photosensitive neuron is found in each connective; its morphological position and pattern of peripheral connections are quite constant from preparation to preparation. These cells are "primary" photoreceptor elements by the following criteria: (1) production of a graded depolarization upon illumination and (2) resetting of the sensory rhythm by interpolated antidromic impulses. They are also secondary interneurons integrating mechanical stimuli which originate from appendages of the tail. Volleys in ipsilateral afferent nerves produce short-latency graded excitatory postsynaptic potentials which initiate discharge of one or two impulses; there is also a higher threshold inhibitory pathway of longer latency and duration. Contralateral afferents mediate only inhibition. Both inhibitory pathways are effective against both spontaneous and evoked discharges. In the dark, spontaneous impulses arise at frequencies between 5 and 15 per second with fairly constant intervals if afferent roots are cut. Since this discharge rhythm is reset by antidromic or orthodromic impulses, it is concluded that an endogenous pacemaker potential is involved. It is postulated that the increase in discharge frequency caused by illumination increases the probability that an inhibitory signal of peripheral origin will be detected.  相似文献   

12.
Evidence indicates that lateral-line fibers, other than those mediating the "spontaneous" activity of the lateral-line receptors, are brought into play in response to pressure stimuli in catfish and in trout. The distribution and mode of stimulation of mechanoreceptors along the lateral-lines of trout and catfish are discussed in relation to the natural activities of these forms.  相似文献   

13.
The reactions of catfish, sunfish, perch, and mummichog to temperature changes, as described in this paper, indicate that certain receptors supplied by the lateral-line nerve are concerned with thermal reception.  相似文献   

14.
Stalker HD 《Genetics》1980,95(1):211-223
In the midwestern and eastern U.S. populations of Drosophila melanogaster, the Standard gene arrangements show higher frequencies in the north than in the south. In a Missouri population, and to a lesser extent in a south Texas population, the frequencies of Standard chromosomes regularly rise during the cold season and drop during the warm season, thus paralleling the north-south frequency differences. In the Missouri population in 1976 and 1978, wild males were tested for their ability to fly to bait at different ambient temperatures. In both years, males flying in nature in the temperature range of 13° to 15° showed significantly higher frequencies of Standard chromosomes than did those flying in the 16° to 28° range. Wild males flying at 13° to 15° also have different thorax/wing proportions and significantly lower wing-loading indices than do those flying at 16° to 28°. Moreover, wild flies homozygous Standard in 2R and/or 3R have significantly lower wing-loading indices than flies carrying inversions in these arms. Thus, wild flies with high frequencies of Standard chromosomes are karyotypically northern, are selectively favored during the cold season, have a relatively low wing-load and are most capable of flying at critically low ambient temperatures.—In summary, in Missouri, presence or absence of the common cosmopolitan inversions is an important factor in low temperature adaptation, and at least part of the adaptive mechanism involves control of thorax/wing proportions and thus control of wing-loading.  相似文献   

15.
The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.  相似文献   

16.
Stout DG 《Plant physiology》1988,86(1):275-282
The resistive and reactive components of electrical impedance were measured for birdsfoot trefoil (Lotus corniculatus L.) stems at freezing temperatures to −8°C. As temperature decreased the specific resistance at frequencies between 49 hertz and 1.11 megahertz of stems from cold acclimated plants increased more rapidly than from nonacclimated plants. This temperature dependence of specific resistance could be characterized by an Arrhenius activation energy; cold acclimated stems had a larger Arrhenius activation energy than nonacclimated stems. The low frequency resistance is believed to characterize the extracellular region of the stems and the high frequency resistance is believed to characterize the intracellular region of the stems. Cold acclimation increased the intracellular but not the extracellular resistance at nonfreezing temperatures. Cold acclimated stems were not injured by freezing to −8°C and thawing, but nonacclimated stems were injured by freezing to temperatures between −2.2 and −5.6°C and thawing. Injury to nonacclimated stems at freezing temperatures below −2.2°C was indicated by a decrease in the ratio of resistance at 49 Hz to that at 1.11 megahertz.  相似文献   

17.
In experiments aimed at determining acousticolateralis marker proteins, fractions of lateral-line organs and skin of Xenopus laevis were analyzed by one- and two-dimensional polyacrylamide-gel electrophoresis. A protein fraction of approximately 44K mol. wt (K = 1000 daltons) and isoelectric pH 6.3, consisting of at least two components, was enhanced in lateral-line neuromast tissue (containing hair cells) and was decreased in tactile organs and skin (lacking hair cells). This "neuromast-marker-protein" fraction had a mol. wt close to that of actin but was shown to be different from actin. Two other major proteins, at mol. wts 16 and 28K, were present in gels of skin and absent in gels of lateral-line tissue. These proteins were shown to be due to secretion of the amphibian granular glands and were designated "negative marker proteins".  相似文献   

18.
In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation.  相似文献   

19.
The frequency of contraction of the bell of Gonionemus was studied in relation to temperature, with intact animals and also where different operations were made on the nervous system. A number of values of µ are found for intact animals namely 8,100±, 10,500±, 32,000± and 22,500±, with critical temperatures at 9.6°, 12.3°, and 14.0°. Four different classes of operations were used: (1) Animals where the nerve ring was cut on two opposite sides of the bell; the µ values found are 10,500± and 21,300±, with a critical temperature at 13.4°. (2) Animals with four cuts through the nerve ring gave µ = 10,600 ± and µ = 21,000, with a critical temperature at 13.1°. (3) In animals where the bell was cut in half the temperature characteristic was found to be 16,900. And finally (4) in the animals where the nerve ring was totally removed µ values of 8,100, 16,000±, and 29,000 were found, with critical temperatures at 15.0° and 9.4°. These results are discussed from the standpoint of the theory which supposes that definite "temperature characteristics" may be associated with the functional activity of particular elements in a complex functional unit, and that these elements may be separately studied and identified by suitable experimental procedures involving the magnitudes of the respective temperature characteristics and the locations of associated critical temperatures. The swimming bell of medusæ with its marginal sense organs permits a fairly direct approach to such questions. It is found that even slight injuries to the marginal nerve ring, for example, produce specific modifications in the temperature relations which are different from those appearing when the organism is cut in half.  相似文献   

20.
We have shown that cutaneous cooling-sensitive receptors can work as thermostats of skin temperature against cooling. However, molecule of the thermostat is not known. Here, we studied whether cooling-sensitive TRPM8 channels act as thermostats. TRPM8 in HEK293 cells generated output (y) when temperature (T) was below threshold of 28.4°C. Output (y) is given by two equations: At T >28.4°C, y = 0; At T <28.4°C, y  =  -k(T – 28.4°C). These equations show that TRPM8 is directional comparator to elicits output (y) depending on negative value of thermal difference (ΔT  =  T – 28.4°C). If negative ΔT-dependent output of TRPM8 in the skin induces responses to warm the skin for minimizing ΔT recursively, TRPM8 acts as thermostats against cooling. With TRPM8-deficient mice, we explored whether TRPM8 induces responses to warm the skin against cooling. In behavioral regulation, when room temperature was 10°C, TRPM8 induced behavior to move to heated floor (35°C) for warming the sole skin. In autonomic regulation, TRPM8 induced activities of thermogenic brown adipose tissue (BAT) against cooling. When menthol was applied to the whole trunk skin at neutral room temperature (27°C), TRPM8 induced a rise in core temperature, which warmed the trunk skin slightly. In contrast, when room was cooled from 27 to 10°C, TRPM8 induced a small rise in core temperature, but skin temperature was severely reduced in both TRPM8-deficient and wild-type mice by a large heat leak to the surroundings. This shows that TRPM8-driven endothermic system is less effective for maintenance of skin temperature against cooling. In conclusion, we found that TRPM8 is molecule of thermostat of skin temperature against cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号