首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T. The photosynthesis gene cluster is located within a ~73 kb AseI genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The data were compared with the corresponding genes/ORFs from a different strain of R.sphaeroides and Rhodobacter capsulatus, a close relative of R.sphaeroides. A detailed analysis of the gene organization in the photosynthesis region revealed a similar gene order in both species with some notable differences located to the pucBAC=cycA region. In addition, photosynthesis gene regulatory protein (PpsR, FNR, IHF) binding motifs in upstream sequences of a number of photosynthesis genes have been identified and shown to differ between these two species. The difference in gene organization relative to pucBAC and cycA suggests that this region originated independently of the photosynthesis gene cluster of R.sphaeroides.  相似文献   

2.
To examine the factors which limit photosynthesis and their role in photosynthetic adaptation to growth at low dissolved inorganic carbon (DIC), Synechococcus leopoliensis was grown at three concentrations (as signified by brackets) of DIC, high (1000-1800 micromolar), intermediate (200-300 micromolar), and low (10-20 micromolar). In all cell types photosynthesis varied from being ribulose bisphosphate (RuBP)-saturated at low external [DIC] to RuBP-limited at high external [DIC]. The maximum rate of photosynthesis (Pmax) was achieved when the internal concentration of RuBP fell below the active site density of RuBP carboxylase/oxygenase (Rubisco). At rates of photosynthesis below Pmax, photosynthetic capacity was limited by the ability of the cell to transport inorganic carbon and to supply CO2 to Rubisco. Adaptation to low DIC was reflected by a decrease in the [DIC] required to half-saturate photosynthesis. Simultaneous mass-spectrometric measurement of rates of photosynthesis and DIC transport showed that the initial slope of the photosynthesis versus [DIC] curve is identical to the initial slope of the DIC transport versus [DIC] curve. This provided evidence that the enhanced capacity for DIC transport which occurs upon adaptation to low [DIC] was responsible for the increase in the initial slope of the photosynthesis versus [DIC] curve and therefore the decrease in the half saturation constant of photosynthesis with respect to DIC. Levels of RuBP and in vitro Rubisco activity varied only slightly between high and intermediate [DIC] grown cells but fell significantly (65-70%) in low [DIC] grown cells. Maximum rates of photosynthesis followed a similar pattern with Pmax only slightly lower in intermediate [DIC] grown cells than in high [DIC] grown cells, but much lower in low [DIC] grown cells. The changing response of photosynthesis to [DIC] during adaptation to low DIC, may be explained by the interaction between DIC-transport limited and [RuBP]-limited photosynthesis.  相似文献   

3.
Photosynthesis in the Azolla-Anabaena association was characterized with respect to photorespiration, early products of photosynthesis, and action spectra. Photorespiration as evidenced by an O2 inhibition of photosynthesis and an O2-dependent CO2 compensation concentration was found to occur in the association, and endophyte-free fronds, but not in the endophytic Anabaena. Analysis of the early products of photosynthesis indicated that both the fern and cyanobacterium fix CO2 via the Calvin cycle. The isolated endophytic Anabaena did not release significant amounts of amino acids synthesized from recently fixed carbon. The action spectra for photosynthesis in the Azolla-Anabaena association indicated that the maximum quantum yield is between 650 and 670 nanometers, while in the endophyte the maximum is between 580 and 640 nanometers. Although the endophytic cyanobacterium is photosynthetically competent, any contribution it makes to photosynthesis in the intact association was not apparent in the action spectrum.  相似文献   

4.
The effect of soil flooding on photosynthesis, transpiration and stomatal conductance of Jatropha curcas seedlings were studied under natural environmental variables. Soil flooding reduced photosynthesis (P N), transpiration (E) and stomatal conductance (gs) in response to leaf positions of Jatropha curcas plants. Based on the results, we conclude that decrease in stomatal opening and stomatal limitation of photosynthesis, followed by decrease in individual leaf area are the main causes of reductions in carbon uptake of flooded seedlings. A mathematical relationship was successfully developed to describe photosynthesis, transpiration and stomatal response of Jatropha under soil flooding stress.  相似文献   

5.
The appearance of oxygen in the Earth''s atmosphere via oxygenic photosynthesis required strict anaerobes and obligate phototrophs to cope with the presence of this toxic molecule. Here we show that in the anoxygenic phototroph Rubrivivax gelatinosus, the terminal oxidases (cbb3, bd, and caa3) expand the range of ambient oxygen tensions under which the organism can initiate photosynthesis. Unlike the wild type, the cbb3/bd double mutant can start photosynthesis only in deoxygenated medium or when oxygen is removed, either by sparging cultures with nitrogen or by co-inoculation with strict aerobes bacteria. In oxygenated environments, this mutant survives nonphotosynthetically until the O2 tension is reduced. The cbb3 and bd oxidases are therefore required not only for respiration but also for reduction of the environmental O2 pressure prior to anaerobic photosynthesis. Suppressor mutations that restore respiration simultaneously restore photosynthesis in nondeoxygenated medium. Furthermore, induction of photosystem in the cbb3 mutant led to a highly unstable strain. These results demonstrate that photosynthetic metabolism in environments exposed to oxygen is critically dependent on the O2-detoxifying action of terminal oxidases.  相似文献   

6.

Background and Aims

Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant.

Methods

A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes.

Key Results

In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %.

Conclusions

Based on the results, maintaining biochemical capacity of the middle–lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.  相似文献   

7.
Luronium natans (L.) Raf. (Floating Water-plantain) is an endangered amphibious freshwater species endemic to Europe. We examined the plasticity in carbon acquisition and photosynthesis in L. natans to assess if lack of plasticity could contribute to explain the low competitive ability of the species. The plasticity of photosynthesis in submerged leaves towards inorganic carbon availability was examined and the photosynthesis of submerged, floating and aerial leaves was contrasted. L. natans was shown to be plastic in inorganic carbon uptake, as it was able to effectively acclimate to changed concentrations of free-CO2. The photosynthetic apparatus was down-regulated in plants grown at high CO2. Chlorophyll concentration, Rubisco activity and maximum photosynthesis were significantly lower in submerged leaves of plants grown at high CO2 (200 μM free-CO2) compared to plants grown at low CO2 (18 μM free-CO2). Furthermore, bicarbonate utilization was down-regulated in response to high CO2. Carbon acquisition of submerged, floating and aerial leaves of L. natans differed significantly. The aerial leaves were superior in photosynthesising in air and, surprisingly, the floating leaves had the highest rates of photosynthesis in water. The study did not support the hypothesis that the low competitive ability of L. natans is caused by inefficient photosynthesis or a lack of plasticity in photosynthesis. However, the somewhat low photosynthetic performance of the submerged leaves may be a contributing factor.  相似文献   

8.
Giorgio Forti 《BBA》2008,1777(11):1449-1454
It is reported that O2 is required for the activation of photosynthesis in dark adapted Chlamydomonas reinhardtii in State 1, under low light intensity. The concentration of dissolved O2 of ca. 9 µM is sufficient to saturate the requirement. When the concentration of O2 is 3 μM or below, the activation of photosynthesis is strongly inhibited by myxothiazol, a specific inhibitor of the mitochondrial cytochrome bc1. The effect of this inhibitor decreases as the O2 concentration is raised, to disappear completely above 50 μM. Low concentrations of uncouplers delay the activation of photosynthesis, but do not inhibit it when steady state is reached. It is concluded that in State 1 C. reinhardtii mitochondrial respiration is required for the activation of photosynthesis upon illumination of dark adapted cells only when the concentration of O2 is too low (less than 5 μM) to allow an appreciable activity of the Mehler reaction. The role of respiration does not seem to be due to the synthesis of ATP by oxidative phosphorylation, because photosynthesis activation is not sensitive to oligomycin.  相似文献   

9.
Axel Kleidon 《BBA》2021,1862(1):148303
Photosynthesis converts sunlight into the chemical free energy that feeds the Earth's biosphere, yet at levels much lower than what thermodynamics would allow for. I propose here that photosynthesis is nevertheless thermodynamically limited, but this limit acts indirectly on the material exchange. I substantiate this proposition for the photosynthetic activity of terrestrial ecosystems, which are notably more productive than the marine biosphere. The material exchange for terrestrial photosynthesis involves water and carbon dioxide, which I evaluate using global observation-based datasets of radiation, photosynthesis, precipitation and evaporation. I first calculate the conversion efficiency of photosynthesis in terrestrial ecosystems and its climatological variation, with a median efficiency of 0.77% (n = 13,274). The rates tightly correlate with evaporation on land (r2 = 0.87), which demonstrates the importance of the coupling of photosynthesis to material exchange. I then infer evaporation from the maximum material exchange between the surface and the atmosphere that is thermodynamically possible using datasets of solar radiation and precipitation. This inferred rate closely correlates with the observation-based land evaporation dataset (r2 = 0.84). When this rate is converted back into photosynthetic activity, the resulting patterns correlate highly with the observation-based dataset (r2 = 0.66). This supports the interpretation that it is not energy directly that limits terrestrial photosynthesis, but rather the material exchange that is driven by sunlight. This interpretation can explain the very low, observed conversion efficiency of photosynthesis in terrestrial ecosystems as well as its spatial variations. More generally, this implies that one needs to take the necessary material flows and exchanges associated with life into account to understand the thermodynamics of life. This, ultimately, requires a perspective that links the activity of the biosphere to the thermodynamic constraints of transport processes in the Earth system.  相似文献   

10.
11.
12.
《Journal of Asia》2014,17(2):151-154
Previous studies of the impacts of galls on host leaf photosynthesis do not suggest any general trends, with a reported range of effects from negative to positive. In this study, photosynthetic characteristics such as chlorophyll fluorescence (Fv/Fm), photosynthetic capacity, and stomata conductance were determined in two types of fruit-like galls (red ovoid and green obovate galls) induced by Daphnephila taiwanensis and Daphnephila sueyenae, respectively, in order to investigate whether the number of galls affects the photosynthesis of galled leaves of Machilus thunbergii. In 2008, chlorophyll fluorescence and photosynthetic capacity were negatively correlated with gall numbers, non-significantly and significantly, respectively, whereas stomata conductance was positively but non-significantly correlated with gall numbers. In 2009, photosynthesis capacity and stomata conductance were negatively, but non-significantly, correlated with gall numbers. Results imply that photosynthesis in M. thunbergii leaves is slightly affected by the number of cecidomyiid insect galls, and that the higher the gall number, the greater the negative effect that galls have on host leaf photosynthesis and subsequent infection.  相似文献   

13.
Some previous studies of photorespiration and glycolate oxidation were re-examined and correlated by infra-red CO2 analysis. Data about rate of photosynthesis and oxygen sensitivity indicated that complete inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1 dimethyl urea (DCMU) allowed dark respiration to continue in the light. Photorespiration was also inhibited. The oxygen sensitivity of glycolate-stimulated CO2 production was found to be compatible with the proposal that glycolate is a substrate of photorespiration. Both `in vivo' and `in vitro' studies of the alga Nitella flexilis have revealed a pathway of glycolate oxidation similar to that of higher plants. DCMU inhibition of photosynthesis by Nitella gave results similar to those for the monocotyledons tested. Under very low light intensity, carbon dioxide compensation in corn was measurable but was not sensitive to high oxygen concentration. It appears that the lack of photorespiration in this plant is not the end result of efficient internal recycling of CO2 to photosynthesis.  相似文献   

14.
《Aquatic Botany》1987,27(1):15-26
The relationships between light regime, photosynthesis, growth and depth distribution of a temperate seagrass, Zostera marina L. (eelgrass), were investigated in a subtidal eelgrass meadow near Woods Hole, MA. The seasonal light patterns in which the quantum irradiance exceeded the light compensation point (Hcomp) and light saturation point (Hsat) for eelgrass photosynthesis were determined. Along with photosynthesis and respiration rates, these patterns were used to predict carbon balances monthly throughout the year. Gross photosynthesis peaked in late-summer, but net photosynthesis peaked in spring (May), due to high respiration rates at summer temperatures. Predictions of net photosynthesis correlated with in situ growth rates at the study site and with reports from other locations.The maximum depth limit for eelgrass was related to the depth distribution of Hcomp, and a minimum annual average Hcomp (12.3 h) for survival was determined. Maximum depth limits for eelgrass were predicted for various light extinction coefficients and a relationship between Secchi disc depth and the maximum depth limit for survival was established. The Secchi disc depth averaged over the year approximates the light compensation depth for eelgrass. This relationship may be applicable to other sites and other seagrass species.  相似文献   

15.
16.
Oxygen Stimulation of Apparent Photosynthesis in Flaveria linearis   总被引:3,自引:1,他引:2       下载免费PDF全文
A plant was found in the C3-C4 intermediate species, Flaveria linearis, in which apparent photosynthesis is stimulated by atmospheric O2 concentrations. A survey of 44 selfed progeny of the plant showed that the O2 stimulation of apparent photosynthesis was passed on to the progeny. When leaves equilibrated at 210 milliliters per liter O2 were transferred to 20 milliliters per liter O2 apparent photosynthesis was initially stimulated, but gradually declined so that at 30 to 40 minutes the rate was only about 80 to 85% of that at 210 milliliters per liter O2. Switching from 20 to 210 milliliters per liter caused the opposite transition in apparent photosynthesis. All other plants of F. linearis reached steady rates within 5 minutes after switching O2 that were 20 to 24% lower in 210 than in 20 milliliters per liter O2. At low intercellular CO2 concentrations and low irradiances, O2 inhibition of apparent photosynthesis of the aberrant plant was similar to that in normal plants, but at an irradiance of 2 millimoles quanta per square meter per second and near 300 microliters per liter CO2 apparent photosynthesis was consistently higher at 210 than at 20 milliliters per liter O2. In morphology and leaf anatomy, the aberrant plant is like the normal plants in F. linearis. The stimulation of apparent photosynthesis at air levels of O2 in the aberrant plant is similar to other literature reports on observations with C3 plants at high CO2 concentrations, high irradiance and/or low temperatures, and may be related to limitation of photosynthesis by triose phosphate utilization.  相似文献   

17.
Brown RH  Byrd GT  Black CC 《Plant physiology》1992,100(2):947-950
Hybrids have been made between species of Flaveria exhibiting varying levels of C4 photosynthesis. The degree of C4 photosynthesis expressed in four interspecific hybrids (Flaveria trinervia [C4] × F. linearis [C3-C4], F. brownii [C4-like] × F. linearis, and two three-species hybrids from F. trinervia × [F. brownii × F. linearis]) was estimated by inhibiting phosphoenolpyruvate carboxylase in vivo with 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate (DCDP). The inhibitor was fed to detached leaves at a concentration of 4 mm, and apparent photosynthesis was measured at atmospheric levels of CO2 and at 20 and 210 mL L−1 of O2. Photosynthesis at 210 mL L−1 of O2 was inhibited 32% by DCDP in F. linearis, by 60% in F. brownii, and by 87% in F. trinervia. Inhibition in the hybrids ranged from 38 to 52%. The inhibition of photosynthesis by 210 mL L−1 of O2 was increased when DCDP was used, except in the C4 species, F. trinervia, in which photosynthesis was insensitive to O2. Except for F. trinervia, control plants with less O2 sensitivity (more C4-like) exhibited a progressively greater change in O2 inhibition of photosynthesis when treated with DCDP. This increased O2 inhibition probably resulted from decreased CO2 concentrations in bundle sheath cells due to inhibition of phosphoenolpyruvate carboxylase. The inhibition of photosynthesis by DCDP is concluded to underestimate the degree of C4 photosynthesis in the interspecific hybrids because increased direct assimilation of atmospheric CO2 by ribulose bisphosphate carboxylase may compensate for inhibition of phosphoenolpyruvate carboxylase.  相似文献   

18.
The effects of elevated CO2 and temperature on photosynthesis and calcification of two important calcifying reef algae (Halimeda macroloba and Halimeda cylindracea) were investigated with O2 microsensors and chlorophyll a fluorometry through a combination of two pCO2 (400 and 1,200 μatm) and two temperature treatments (28 and 32 °C) equivalent to the present and predicted conditions during the 2100 austral summer. Combined exposure to pCO2 and elevated temperature impaired calcification and photosynthesis in the two Halimeda species due to changes in the microenvironment around the algal segments and a reduction in physiological performance. There were no significant changes in controls over the 5-week experiment, but there was a 50–70 % decrease in photochemical efficiency (maximum quantum yield), a 70–80 % decrease in O2 production and a threefold reduction in calcification rate in the elevated CO2 and high temperature treatment. Calcification in these species is closely coupled with photosynthesis, such that a decrease in photosynthetic efficiency leads to a decrease in calcification. Although pH seems to be the main factor affecting Halimeda species, heat stress also has an impact on their photosystem II photochemical efficiency. There was a strong combined effect of elevated CO2 and temperature in both species, where exposure to elevated CO2 or temperature alone decreased photosynthesis and calcification, but exposure to both elevated CO2 and temperature caused a greater decline in photosynthesis and calcification than in each stress individually. Our study shows that ocean acidification and ocean warming are drivers of calcification and photosynthesis inhibition in Halimeda. Predicted climate change scenarios for 2100 would therefore severely affect the fitness of Halimeda, which can result in a strongly reduced production of carbonate sediments on coral reefs under such changed climate conditions.  相似文献   

19.
The discovery of the chlorophyll d-containing cyanobacterium Acaryochloris marina in 1996 precipitated a shift in our understanding of oxygenic photosynthesis. The presence of the red-shifted chlorophyll d in the reaction centre of the photosystems of Acaryochloris has opened up new avenues of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we detail the chemistry and role of chlorophyll d in photosynthesis and summarise the unique adaptations that have allowed the proliferation of Acaryochloris in diverse ecological niches around the world.  相似文献   

20.
Increasing pretreatment day temperatures of 20, 30, and 40 C resulted in decreased net photosynthesis in Agropyron smithii (C3) while in Bouteloua gracilis (C4) net photosynthesis was increased. The effect on photosynthesis of increasing analysis temperatures was the same as observed by increasing pretreatment temperatures. Resistance of the stomata and boundary layer were less affected by pretreatment temperatures than were the remaining resistances of a physical and chemical nature. Resistances for A. smithii were increased and those for B. gracilis were decreased by increasing pretreatment temperatures. Phenology of the species in the shortgrass prairie is such that A. smithii has its greatest growth activity during the cool portion of the growth season, whereas B. gracilis is most active in the warm portion. Thus, photosynthetic adaptation to temperature is strongly suggested as a strategy for ecosystem utilization by reduction of interspecific competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号