首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flicker response contour for the frog Rana pipiens exhibits the duplex character typical for most vertebrates. By comparison (under the same conditions of temperature, 21.5°, and light-time fraction, = 0.5), the low intensity section of the F - log I curve is the smallest thus far found. The cone portion of the curve is satisfactorily described by a probability integral. The rod part represents the addition of a small group of sensory effects upon the lower end of the cone curve, from which it can be analytically separated. The relation between the two groups of sensory effects permits certain tests of the rule according to which (in homogeneous data) Im and σ1I1 are in direct proportion.  相似文献   

2.
After Fundulus heteroclitus have been for some time in the laboratory, under conditions favorable for growth, and after habituation of the fishes to the simple routine manipulations of the observational procedure required, they are found to give reproducible values of the mean critical flash illumination (Im) resulting in response to visual flicker. The measurements were made with equality of light time and dark time in the flash cycle, at 21.5°C. Log Im as a function of flash frequency F has the same general form as that obtained with other fishes tested, and for vertebrates typically: the curve is a drawn-out S, with a second inflection at the low I end. In details, however, the curve is somewhat extreme. Its composite form is readily resolved into the two usual parts. Each of these expresses a contribution in which log I, as a function of F, is accurately expressed by taking F as the summation (integral) of a probability distribution of d log I, as for the flicker response contour of other animals. As critical intensity I increases, the contribution of rod elements gradually fades out; this decay also adheres to a probability integral. The rod contribution seen in the curve for Fundulus is larger, absolutely and relatively to that from the cones, than that found with a number of other vertebrates. The additive overlapping of the rod and cone effects therefore produces a comparatively extreme distortion of the resulting F-log I curve. The F-log Im curve is shifted to lower intensities as result of previous exposure to supranormal temperatures. This effect is only very slowly reversible. The value of F max. for each of the components of the duplex curve remains unaffected. The rod and cone segments are shifted to the same extent. The persisting increase of excitability thus fails to reveal any chemical or other differentiation of the excitability mechanism in the two groups of elements. Certain bearings of the data upon the theory of the flicker response contour are discussed, with reference to the measurements of variation of critical intensity and to the form of the F-log I curve. The quantitative properties of the data accord with the theory derived from earlier observations on other forms.  相似文献   

3.
The flicker response contour for the isopod Asellus is a simple probability integral (F - log I) over the whole determinable range (F = 1 to 51). This contrasts with the "distorted" asymmetrical curves obtained with Apis, Anax, and other arthropods with large convex eyes. The explanation of the distortion as due to mechanical conditions affecting photoreception is therefore confirmed, as the structure of the Asellus eye does not make such a factor likely to be expected for this case. The Asellus curve agrees with the only other available complete and uncomplicated flicker response contour (from Pseudemys, turtle with rod-free retina), in showing the superiority of the probability integral formulation as compared with certain others which have been suggested. It is noted as a curious and probably important fact that the relative dispersion of the intensity thresholds (σ''log I) for the elements implicated in determining the flicker contour appears to be identical in bee, dragon fly nymph, and isopod. Other relevant information derived from similar experiments with vertebrates shows that this quantity is specifically determined by the organization of the animal. The nature of the common feature of neural organization in three such diverse arthropods, as contrasted with the diversity seen within one class of vertebrates (e.g., teleosts), remains to be discovered.  相似文献   

4.
The F - log I curve for threshold response to visual flicker has been determined for the crayfish Cambarus bartoni. As predicted on the basis of the higher curvature of the optic surface, the flicker response contour is more asymmetrical than for bee and dragonfly nymph under comparable conditions of temperature and light time fraction of flash cycle. The mechanical origin of this asymmetry is thus confirmed, and is further supported by the similar forms of the F - log I curves in bee, dragonfly larva, and crayfish in the lower portion of the curves (up to F = 70 per cent Fmax.). The slope of the fundamental curve for crayfish, deduced by analysis of the data, is lower than for bee, dragonfly nymph, or Asellus. This signifies a wider spread of the effective distribution of elemental log I thresholds involvable in the response to flicker, and may be traced either to the greater curvature of the eye-surfaces or to their position upon movable pedicles. The results are therefore consistent with the statistical conception of the nature of effects recognizable as due to the activity of excitable elements.  相似文献   

5.
The flicker response contour has been determined for several species and types of the teleosts Xiphophorus (X.) and Platypoecilius (P.) under the same conditions. The curve (F vs. log Im) is the same for representatives of each generic type, but is different for the two genera. Its duplex nature is analyzable in each instance by application of the probability integral equation to the rod and cone constituent parts. The parameters of this function provide rational measures of invariant properties of the curves, which have specific values according to the genetic constitution of the animal. The F 1 hybrids (H'''') of X. montezuma x P. variatus show dominance of the X. properties with respect to cone Fmax. and σ'' log I, but an intermediate value of the abscissa of inflection (τ''). The rod segment shows dominance of σ'' log I from P., but an intermediate value of Fmax. and of τ''. The composite flicker curve involves the operation of two distinct assemblages of excitable elements, differing quantitatively but not qualitatively in physicochemical organization, probably only secondarily related to the histological differentiation of rods and cones because almost certainly of central nervous locus, but following different rules in hereditary determination, and therefore necessarily different in physical organization. The interpretation of the diverse behavior of the three parameters of the probability summation is discussed, particularly in relation to the physical significance of these parameters as revealed by their quantitative relations to temperature, retinal area, and light time fraction in the flash cycle, and to their interrelations in producing the decline of rod effects at higher intensities. It is stressed that in general the properties of the parameters of a chosen interpretive analytical function must be shown experimentally to possess the physical properties implied by the equation selected before the equation can be regarded as describing those invariant properties of the organic system concerned upon which alone can deduction of the nature of the system proceed. The importance of genetic procedures in furthering demonstration that the biological performance considered in any particular case exhibits constitutionally invariant features provides a potentially powerful instrument in such rational analysis.  相似文献   

6.
The flicker response contour for the gecko Sphaerodactylus (retina with only rods) agrees in all essential respects (intensity range, shape) with that for the turtle Pseudemys (cone retina), as determined under equivalent conditions with the same apparatus. With experimentally determined correction for the expansion of the iris at the very lowest intensities, the F - log I contour for the gecko is a simple probability integral. Its maximum F is lower than that for other animals; this means simply a smaller number of available sensory elements. The quantitative parallelism in the magnitudes of the intensities at the inflection of F - log I and the shape constants for rod and cone animals show that assumptions from comparative histological evidence concerning the properties of rods and cones in relation to visual performance may be quite misleading.  相似文献   

7.
The several parameters of the flicker response contour (F – log I) are considered as a function of wave-length composition (white, blue, and red) and light-time fraction, for an extra-foveal region (monocular, temporal retina). These data are compared with those secured for the same image area centrally fixated at the fovea. The systematic changes in the parameters are shown to be in rational relation to other relevant excitability data. Since for two retinal regions the primary contours are quite different, the systematic nature of the behavior of the parameters in the two cases is a real test of the power of the analysis proposed. Theoretical interpretation is required to deal with the properties of sets of performance contours under systematically varied conditions, and cannot rely simply on the comparison of (for example) two contours under the same arbitrary conditions at two retinal locations. In particular it is emphasized that a qualitative separation must be made of the two factors of (a) number of units and (b) the frequencies of their actions, before the wave-length problem can be dealt with effectively.  相似文献   

8.
The flicker contour for the house sparrow Passer domesticus is duplex, corresponding to the presence of both rods and cones in the retina. The presence of the pecten brings about changes in the "cone" part of the contour when the light-time in the flash cycle is varied. These changes are of the same sort as those we have already described for the visually simplex zebra finch, and for man provided with an artificial "pecten shadow." The changes are such as to greatly enhance flicker acuity for small dark-times (moving stripe technique). The form of the scotopic part of the duplex contour (also as in the case with man) gives no evidence that rod excitation is specifically influenced by the presence of the pecten. The changing integration of "rod" and "cone" effects as the light-time fraction is altered provides another means of testing the theory used for the analytical separation of the two components of the duplex flicker contour.  相似文献   

9.
The lizard Phrynosoma, with purely cone retina, provides a simplex flicker response contour (log critical flash intensity as a function of flash frequency). It is well described as a normal probability integral (F - log I). The Phrynosoma curve differs markedly, in higher slope and in higher median intensity level, from that obtained under the same conditions for the turtle Pseudemys, also with entirely cone retina. Other comparisons having a bearing on the duplexity doctrine are discussed.  相似文献   

10.
The bee''s characteristic response to a movement of its visual field is used for the study of the relation between critical frequency of flicker and illumination. The critical flicker frequency varies with illumination in such a way that with increasing flicker frequency the intensity of illumination must be increased to produce a threshold response in the bee. The illuminations required to give a response in a bee at different flicker frequencies closely correspond to the intensities for threshold response in visual acuity tests. This is due to the different thresholds of excitability of the elements of the ommatidial mosaic. An analysis of the variation of the values for threshold intensities at the several flicker frequencies shows that the variation depends upon flicker frequency and upon the number of elements functioning at different intensities.  相似文献   

11.
From the relations between critical illumination in a flash (Im) and the flash frequency (F) for response of the sunfish to visual flicker when the proportion of light time to dark time (tL/tD) in a flicker cycle is varied at one temperature (21.5°) the following results are obtained: At values of tL/tD between 1/9 and 9/1 the F - log Im curves are progressively shifted toward higher intensities and lower Fmax.. Fmax. is a declining rectilinear function of the percentage of the flash cycle time occupied by light. The rod and the cone portions of the flicker curve are not shifted to the same extent. The cone portion and the rod region of the curve are each well described by a probability integral. In terms of F as 100 F/Fmax. the standard deviation of the underlying frequency distribution of elemental contributions, summed to produce the effect proportional to F, is independent of tL/tD. The magnitude of log Im at the inflection point (r''), however, increases rectilinearly with the percentage light time in the cycle. The proportionality between Im and σII1 is independent of tL/tD. These effects are interpreted as consequences of the fact that the number of elements of excitation available for discrimination of flicker is increased by increasing the dark interval in a flash cycle. Decreasing the dark interval has therefore the same kind of effect as reducing the visual area, and not that produced by decreasing the temperature.  相似文献   

12.
不同来源鳖组织浆对机体免疫功能影响   总被引:1,自引:0,他引:1  
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}    相似文献   

13.
The flicker response contour has been determined, with equality of light-dark time ratio, for the diurnal bird the Australian zebra finch. This bird has only cones in the retina. The curve of log critical intensity as a function of flash frequency is simplex, a normal probability integral. In this respect it is like that for other vertebrates not exhibiting visual duplexity. The parameters of the curve most closely approach those for the turtle Pseudemys (extrapolated to about the same temperature); it is not improbable that the approximation of these two curves would be less close for other values of the light-time fraction. Some points of interpretive visual theory are discussed in relation to the present measurements.  相似文献   

14.
Determinations of the flicker response curve (F – log Im) with larvae of Anax junius (dragonfly) for various ratios tL/tD of light time to dark time in a flash cycle provide relations between tL/tD and the parameters of the probability integral fundamentally describing the F – log I function, including the variability of I. These relations are quantitatively of the same form as those found for this function in the sunfish, and are therefore non-specific. Their meaning for the theory of reaction to visual flicker is discussed. The asymmetry of the Anax curve, resulting from mechanical conditions affecting the reception of light by the arthropod eye, is (as predicted) reduced by relative lengthening of the fractional light time in a cycle.  相似文献   

15.
The sun-fish Lepomis responds to a moving system of stripes by a motion of its body. By changing the velocity of motion of the stripe system different flicker frequencies can be produced and thus the relation of flicker frequency to critical intensity of illumination can be studied. Threshold illumination varies with flicker frequency in such a way that with increasing flicker frequency the intensity of illumination must be increased to produce a threshold response in the fish. The curve of critical illumination as a function of frequency is made up of two distinct parts. For an intensity range below 0.04 millilambert and flicker frequencies below 10 per second, the rods are in function. For higher intensities and flicker frequencies above 10, the cones come into play. The maximum frequency of flicker which can be perceived by the fish''s eye is slightly above 50 per second. The flicker curve for the eye of Lepomis can easily be compared with that for the human eye. The extent of the curve for the fish is greater at low illuminations, the fish being capable of distinguishing flicker at illuminations lower than can the human eye. The transition of rod vision to cone vision occurs for the fish and for the human eye at the same intensity and flicker frequency. The maximum frequency of flicker which can be perceived is for both about the same.  相似文献   

16.
From the data of experiments with bees in which threshold response is employed as a means of recognizing visual discrimination between stripes of equal width alternately illuminated by intensities I 1 and I 2, it is shown that the detectable increment of intensity ΔI, where ΔI = I 2 - I 1, is directly proportional to σI2 (I 1 being fixed). From tests of visual acuity, where I 1 = 0 and the width of the stripes is varied, σI2 = kI 2 + const.; here I 2 = ΔI, and ΔI/I 2 = 1. When the visual excitability of the bee is changed by dark adaptation, λIkΔI (= k'' σΔI) = k'''' I + const. For the measurements of critical illumination at threshold response to flicker, σI2 (= σΔI) = k I 2 = k'' ΔI + const. The data for critical illumination producing threshold response to flicker in the sun-fish Lepomis show for the rods σI2 = K I 2 for the cones σI2 = K''(I 2 + const.). The data thus indicate that in all these experiments essentially the same visual function is being examined, and that the recognition of the production of a difference in effect by alternately illuminated stripes takes place in such a way that dI)/dI2) = const., and that ΔI is directly proportional to I (or "I 2," depending on the nature of the experiment). It is pointed out that the curve for each of the cases considered can be gotten equally well if mean I or σI is plotted as a function of the independent variable involved in the experiment. Certain consequences of these and related facts are important for the treatment of the general problem of intensity discrimination.  相似文献   

17.
The relation between flash duration and mean critical intensity (white light) for threshold recognition of visual flicker, as a function of flash frequency, was investigated by means of measurements at five values of the light-time fraction: 0.10, 0.25, 0.50, 0.75, 0.90, with flash frequencies of the interrupted beam ranging from 2 to 60 per second. A square area, 6.1 x 6.1°, centrally fixated) was viewed monocularly; the discriminometer used provides automatically an artificial pupil 1.8 mm. in diameter. Except for the slight day-to-day fluctuation in the magnitudes of the parameters, the data for the observer used are shown to form an essentially homogeneous group. As for other animals tested, the F - log Im curve is enlarged and moved toward lower flash intensities as the light-time fraction is decreased. The high intensity segments of the duplex curves are fitted by normal probability integrals for which F max. and the abscissa of inflection are rectilinear functions of tL(tL + tD), with opposite slopes. The third parameter, (σ''log I, is invariant. The low intensity segments are composites, their shapes determined by the summation of the lower part of the high intensity curve with an overlapping low intensity population of effects. Both the rising and the declining branches of this latter assemblage suffer competitive partial suppression by the effects in the high intensity population. The detailed analysis shows that these results are consistent with the theory of the central, rather than peripheral, location of the dynamically recognizable elements in the determination of flicker.  相似文献   

18.
通过比较19C-4-2,142G,SL63,Tio63以及Fii32等中华鳖的6个致病菌株的免疫原性,认为T3最强,当它的给予量在50-100×108cfu/mL时,中华鳖的免疫保护率和血清间接凝集抗体效价均达较高水平;低于和高于这个量,中华鳖的免疫应答都会有所降低;当其超过160×108cfu/mL时,则会表现出明显的免疫耐受现象.中华鳖最适宜的免疫温度是25-30℃,水温低于10℃,它的免疫应答反应就大大降低.此外良好的水质,充裕的光照也是提高中华鳖免疫应答水平的一个重要因素.  相似文献   

19.
With lights of different spectral compositions filtered from a white, the flicker response contours for the zebra finch are found to exhibit the same general kind of relationship between flicker excitation and wavelength as is found in the case of man ("cone" contours), with the same filters. The flicker contours for the zebra finch are simplex; the retina contains no rods. On a relative energy scale, with a flash cycle of fixed light-time percentage (10 per cent) the curve for yellow almost coincides with that for the white, the curve for red lies at much higher intensities, and the curves for blue-green and violet fall below that for the white by amounts increasing in that order. The maxima to which the curves rise and the slope constants are very nearly the same for all the spectral regions. For the bird the blue was a little less efficient, the green a little more efficient, and the red very much less efficient than in the case of man. It was deduced that in the retina of this diurnal bird the number of red oil globules should be comparatively small and that most of the globules should be greenish yellow. This was confirmed by direct examination.  相似文献   

20.
1. When there is projected on the retina (man, monocularly) the shadow of a grid which forms a visual field in several distinct pieces (not including the fovea in the present tests), the ordinary properties of the flicker recognition contour (F vs. log I) as a function of the light-time cycle fraction (tL) can be markedly disturbed. In the present experiments flicker was produced by the rotation of a cylinder with opaque vertical stripes. In the absence of such a grid shadow the "cone" segments of the contours form a set in which Fmax. and the abscissa of inflection are opposite but rectilinear functions of tL, while the third parameter of the probability integral (σ''log I) remains constant. This is the case also with diverse other animals tested. In the data with the grid, however, analysis shows that even for low values of tL (up to 0.50) there occurs an enhancement of the production of elements of neural effect, so that Fmax. rises rather than falls as ordinarily with increase of tL, although σ''log I stays constant and hence the total number of acting units is presumed not to change. This constitutes valid evidence for neural integration of effects due to the illumination of separated retinal patches. Beginning at tL = 0.75, and at 0.90, the slope of the "cone" curve is sharply increased, and the maximum F is far above its position in the absence of the grid. The decrease of σ''log I (the slope constant) signifies, in terms of other information, an increase in the number of acting cone units. The abscissa of inflection is also much lowered, relatively, whereas without the grid it increases as tL is made larger. These effects correspond subjectively to the fact that at the end-point flicker is most pronounced, on the "cone" curve, along the edges of the grid shadow where contrast is particularly evident with the longer light-times. The "rod" portion of the F - log I contour is not specifically affected by the presence of the grid shadow. Its form is obtainable at tL = 0.90 free from the influence of summating "cone" contributions, because then almost no overlapping occurs. Analysis shows that when overlapping does occur a certain number of rod units are inhibited by concurrent cone excitation, and that the mean contribution of elements of neural action from each of the non-inhibited units is also reduced to an extent depending on the degree of overlap. The isolated "rod" curve at tL = 0.90 is quite accurately in the form of a probability integral. The data thus give a new experimental proof of the occurrence of two distinct but interlocking populations of visual effects, and experimentally justify the analytical procedures which have been used to separate them. 2. The changing form of the F - log I contour as a function of tL, produced in man when the illuminated field is divided into parts by a shadow pattern, is normally found with the bird Taeniopygia castenotis (Gould), the zebra finch. The retina has elements of one general structural type (cones), and the F - log I contour is a simplex symmetrical probability integral. The eye of this bird has a large, complex, and darkly pigmented pecten, which casts a foliated shadow on the retina. The change in form of the F - log I curve occurs with tL above 0,50, and at tL = 0.90 is quite extreme. It is more pronounced than the one that is secured in the human data with the particular grid we have used, but there is no doubt that it could be mimicked completely by the use of other grids. The increase of flicker acuity due to the pecten shadow is considerable, when the dark spaces are brief relative to the light. The evidence thus confirms the suggestion (Menner) drawn from comparative natural history that the visual significance of the avian pecten might be to increase the sensory effect of small moving images. It is theoretically important that (as in the human experiment) this may be brought about by an actual decrease of effective retinal area illuminated. It is also significant theoretically that despite the presence of shadows of pecten or of grid, and of the sensory influences thus introduced, the probability integral formulation remains effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号