首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BCL2-CISD2     
《Autophagy》2013,9(5):856-857
CISD2, an ER BCL2-associated autophagy regulator also known as NAF-1, is responsible for the human degenerative disorder Wolfram Syndrome 2. In order to interrogate the physiological role of CISD2 we generated and characterized the Cisd2 gene deletion in mice. Cisd2 null mice manifest significant degeneration in skeletal muscle tissues, which is accompanied with augmented autophagy, dysregulated Ca2+ homeostasis and elongated mitochondria. Our findings describe a novel role for BCL2-CISD2 in the homeostatic maintenance of skeletal muscle. It remains to be elucidated how and if the antagonism of the BECN1 autophagy-initiating complex and modulation of ER Ca2+ homeostasis by BCL2-CISD2 are interconnected.  相似文献   

2.
2'-Amino-2'-deoxyadenosine and 2'-chloro-2'-deoxycoformycin (2'-CldCF) are two nucleoside antibiotics produced by Actinomadura. The biosynthesis of these two nucleoside antibiotics has been studied by the addition of [U-14C]adenosine with or without unlabeled adenine to cultures of Actinomadura. By this experimental approach, it is possible to demonstrate that adenosine is the direct precursor for the biosynthesis of 2'-amino-2'-deoxyadenosine and 2'-CldCF. These conclusions are based on the observation that the percentage distribution of 14C in the aglyconic and pentofuranosyl moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were similar to the distribution of 14C in the adenine and ribosyl moieties of the [U-14C]adenosine (i.e., 48:52) added to cultures of Actinomadura. Experimentally, the percentage distribution of 14C in the (i) adenine:2-amino-2-deoxy-beta-D-ribofuranose of 2'-amino-2'-deoxyadenosine is 51:49; (ii) 8-(R)-3,6,7,8-tetrahydroimidazo[4,5-d]-[1,3-diazepin-8-o1]:2 -chloro-2- beta-D-ribofuranose of 2'-CldCF is 45:55; and (iii) adenine:ribose of the adenosine isolated from the RNA of Actinomadura is 42:58. Further proof that adenosine is the direct precursor for the biosynthesis 2'-amino-2'-deoxyadenosine and 2'-CldCF was demonstrated by the addition of 75 mumol of unlabeled adenine together with [U-14C]adenosine to nucleoside-producing cultures of Actinomadura. The percentage distribution of 14C in the aglycon and the sugar moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were 46:54 and 47:53, respectively; the percentage distribution of 14C in the adenine and ribose moieties of the adenosine isolated from the RNA of Actinomadura was 51:49. These data show that the hydroxyl on C-2' of the ribosyl moiety of adenosine undergoes a replacement by a 2'-amino or a 2'-chloro group to form 2'-amino-2'-deoxyadenosine or 2'-CldCF with retention of stereconfiguration at C-2'. Finally, Actinomadura can utilize inorganic chloride from the medium as demonstrated by the isolation of [36Cl]2'-CldCF following the addition of [36Cl]chloride to the culture medium. Mechanisms for the regioselective modification of the C-2' hydroxyl group and stereospecific insertion of the amino and chloro groups are discussed.  相似文献   

3.
An overview of structurally characterized alpha-hydroxycarboxylatodioxo- and alpha-hydroxycarboxylatooxoperoxovanadates(V) is presented and the geometric parameters of the V2O2 bridging core are discussed. The first case of a stereospecific formation of oxoperoxovanadates(V) is reported: The crystal structures of the isomeric compounds (NBu4)2[V2O2(O2)2(L-lact)2] x 2H2O and (NBu4)2[V2O2(O2)2(D-lact)(L-lact)] x 2H2O (lact = C3H4O3(2-), the anion of the lactic acid) differ mainly in the arrangement of the V2O2 core and in mutual orientation of the V=O bonds. The complexes with achiral ligands adopt the same structural type as the complexes formed from a racemic mixture of a chiral ligand, while the structure obtained using an enantiopure L,L-hydroxycarboxylate is different.  相似文献   

4.
5.
Histone H2A variants H2AX and H2AZ   总被引:36,自引:0,他引:36  
  相似文献   

6.
Characterization of alpha 2 beta 2 and alpha 2 forms of kinesin   总被引:12,自引:0,他引:12  
Bovine brain kinesin separates into two components on sucrose density gradient centrifugation. The predominant component is a heterotetramer of two 120 kDa alpha subunits and two 64 kDa beta subunits with an sedimentation coefficient of 9.6 S and a low Vm rate of microtubule-stimulated ATPase of 1.3 +/- 0.5 sec-1 at 25 degrees, pH 7.0. The minor element is a homodimer of two alpha subunits without beta subunits with a sedimentation coefficient of 6.9 S and a higher Vm rate of microtubule-stimulated ATPase of 7.0 +/- 1.9 sec-1. Microtubules stimulate the rate of release of ADP from the active site of the tetramer, but the rate of release is not fast enough to account for the rate of steady state ATP hydrolysis. Further complexity is indicated by biphasic release kinetics. In spite of the large difference in Vm ATPase rate for the two species, both drive the sliding of sea urchin axonemes over glass surfaces at the same velocity.  相似文献   

7.
A convenient synthesis of 2'-deoxy-2-fluoroadenosine from commercially available 2-fluoroadenine is described. The coupling reaction of silylated 2-fluoroadenine with phenyl 3,5-bis[O-(t-butyldimethylsilyl)]-2-deoxy-1-thio-D-erythro-pentofuranoside gave the corresponding 2-fluoro-2'-deoxyadenosine derivative (alpha/beta = 1:1) in good yield. The alpha- and beta-anomers were separated by chromatography, and then desilylated to give compounds 1a and 1b.  相似文献   

8.
Rhombomeres are embryonic territories arising from the transient segmentation of the hindbrain. Their identity is specified by Hox genes from paralogous groups 1-4. Hoxa2 is the only Hox gene to be expressed in the second rhombomere and the regulatory cues leading to this region-specific expression have been poorly investigated. A 2.5-kb DNA fragment overlapping with the 3' end of Hoxa2 was previously shown to specifically direct the expression of a reporter gene in the second rhombomere and the rostral somites of mouse embryos. Here, we report that this enhancer region is activated in vitro by Hoxa2 and that this activation is strictly dependent on a short 10-bp sequence matching the consensus for Hox-Pbx recognition sites.  相似文献   

9.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

10.
Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model.  相似文献   

11.
12.
Contrary to what is widely believed, recent published results show that H2O2 does not freely diffuse across biomembranes. The fast removal of H2O2 by antioxidant enzymes is able to generate a gradient if H2O2 is produced in a different compartment from that containing the enzymes (Antunes, F., and Cadenas, E. (2000) FEBS Lett. 475, 121-126). In this work, we extended these studies and tested whether an active regulation of biomembranes permeability characteristics is part of the cell response to oxidative stress. Using Saccharomyces cerevisiae as a model, we showed that: (a) H2O2 gradients across the plasma membrane are formed upon exposure to external H2O2; (b) there is a correlation between the magnitude of the gradients and the resistance to H2O2; (c) there is not a correlation between the intracellular capacity to remove H2O2 and the resistance to H2O2; (d) the plasma membrane permeability to H2O2 decreases by a factor of two upon acquisition of resistance to this agent by pre-exposing cells either to nonlethal doses of H2O2 or to cycloheximide, an inhibitor of protein synthesis; and (e) erg3Delta and erg6Delta mutants, which have impaired ergosterol biosynthesis pathways, show higher plasma membrane permeability to H2O2 and are more sensitive to H2O2. Altogether, the regulation of the plasma membrane permeability to H2O2 emerged as a new mechanism by which cells respond and adapt to H2O2. The consequences of the results to cellular redox compartmentalization and to the origin and evolution of the eukaryotic cell are discussed.  相似文献   

13.
Of the three major classes of ligand-gated ion channels, nicotinic receptors and ionotropic glutamate receptors are known to be organized as pentamers and tetramers, respectively. The architecture of the third class, P2X receptors, is under debate, although evidence for a trimeric assembly is accumulating. Here we provide biochemical evidence that in addition to the rapidly desensitising P2X1 and P2X3 receptors, the slowly desensitising subtypes P2X2, P2X4, and P2X5 are trimers of identical subunits. Similar (heteromeric) P2X subunits also formed trimers, as shown for co-expressed P2X1 and P2X2 subunits, which assembled efficiently to a P2X1+2 receptor that was exported to the plasma membrane. In contrast, P2X6 subunits, which are incapable of forming functional homomeric channels in Xenopus oocytes, were retained in the ER as apparent tetramers and high molecular mass aggregates. Altogether, we conclude from these data that a trimeric architecture is the structural hallmark of functional homomeric and heteromeric P2X receptors.  相似文献   

14.
Runx2/Cbfa1/Pebp2aA is a global regulator of osteogenesis and is crucial for regulating the expression of bone-specific genes. Runx2 is a major target of the bone morphogenetic protein (BMP) pathway. Genetic analysis has revealed that Runx2 is degraded through a Smurf-mediated ubiquitination pathway, and its activity is inhibited by HDAC4. Here, we demonstrate the molecular link between Smurf, HDACs and Runx2, in BMP signaling. BMP-2 signaling stimulates p300-mediated Runx2 acetylation, increasing transactivation activity and inhibiting Smurf1-mediated degradation of Runx2. HDAC4 and HDAC5 dea-cetylate Runx2, allowing the protein to undergo Smurf-mediated degradation. Inhibition of HDAC increases Runx2 acetylation, and potentiates BMP-2-stimulated osteoblast differentiation and increases bone formation. These results demonstrate that the level of Runx2 is controlled by a dynamic equilibrium of acetylation, deacetylation, and ubiquitination. These findings have important medical implications because BMPs and Runx2 are of tremendous interest with regard to the development of therapeutic agents against bone diseases.  相似文献   

15.
RNA interference (RNAi) is a process by which short interfering RNAs (siRNAs) direct the degradation of complementary single-strand RNAs. In this study, we investigated the effects of full-strand phosphorothioate (PS) backbone and 2'-O-methyl (2'-OMe) sugar modifications on RNAi-mediated silencing. In contrast to previous reports, we have identified active siRNA duplexes containing full 2'-OMe-modified sense strands that display comparable activity to the unmodified analog of similar sequence. The structure of these modified siRNAs is the predominant determinant of their activity, with sequence and backbone composition being secondary. We further show, by using biotin-tagged siRNAs and affinity-tagged hAgo2/eIF2C2, that activity of siRNA duplexes containing full 2'-OMe substitutions in the sense strand is mediated by the RNA-induced silencing complex (RISC) and that strand-specific loading (or binding) to hAgo2 may be modulated through selective incorporation of these modifications.  相似文献   

16.
An efficient method for the stereoselective synthesis of 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose is described.

The key step in this method was accomplished by the nucleophilic addition of methyl isocyanoacetate to 2,3-O-isopropylidene-d-glyceraldehyde with high erythro-selectivity (nearly 100%).

Subsequent intermolecular cyclization predominantly gave the desired oxazoline derivative (trans-form), in which two new chiral centers were formed. The oxazoline derivative was efficiently converted to both 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose.  相似文献   

17.
2-Acetamido-2-deoxy-D-glucono-1,4-lactone (1) and 2-acetamido-2-deoxy-D-gluconic acid (3) have been examined for inhibitory activity against 2-acetamido-2-deoxy-β-D-glucosidase from bull epididymis. Crystalline 1 and 3 were compared with the known, crystalline 2-acetamido-2-deoxy-D-glucono-1,5-lactone (2), and a correlation of the activities of these compounds with various factors is presented. The inhibition constant of the 1,5-lactone 2 is lower (0.45μM) than that (4.43μM) of the 1,4-lactone 1. The effect of time is the opposite; whereas the activity of solutions of 2 decreases with time, solutions of 1 show an increase in inhibitory power, but both reach an equilibrium after 5 h. The free acid 3 exhibits no inhibitory activity. 2-Acetamido-2-deoxy-5,6-O-isopropylidene-D-glucono- 1,4-lactone (4) and 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-glucono-1,5-lactone (5), which are appropriately protected to prevent conversion into the other lactone isomer, were also tested; 4 has 1/1000th the activity of 5.  相似文献   

18.
19.
d-myoInositol 1:2-cyclic phosphate 2-phosphohydrolase   总被引:23,自引:19,他引:4       下载免费PDF全文
1. An enzyme in extracts of mammalian tissues catalyses the hydrolysis of d-myoinositol 1:2-cyclic phosphate (an intermediary in the enzymic degradation of phosphatidylinositol) to produce d-myoinositol 1-phosphate. 2. The enantiomorph of the substrate is not attacked. 3. The pH optimum is about 8.1-8.3 and the reaction is stimulated by Mg(2+) ions. 4. Extracts from rat kidney cortex and medulla are very rich sources of the enzyme; brain, testis and small intestine contain intermediary activities, and other tissues contain very small amounts.  相似文献   

20.
A new method for the synthesis of 2'-O-methyl-2-thiouridine (s2Um) found in thermophilic bacterial tRNA was developed. Structural properties of s2Um and s2Um(p)U were studied by using 1H NMR spectroscopy. A modified nonaribonucleotide (RNA*: 5'-CGUUs2UmUUGC-3') was synthesized to study the base-recognition ability of s2Um in formation of RNA-RNA and RNA DNA duplexes. The UV melting experiments revealed that RNA*-RNA and RNA*-DNA duplexes having an s2U-A base pair are more stable than those having a U-A base pair. On the contrary, the thermal stability of RNA*-RNA and RNA*-DNA duplexes having an s2U-G wobble base pair was much lower than that of the unmodified duplexes having a natural U-G base pair. It is concluded that s2Um has higher selectivity toward A over G than unmodified U.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号