首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
戊糖乳杆菌制剂防治仔猪腹泻效果初探   总被引:3,自引:0,他引:3  
目的进行戊糖乳杆菌活菌制剂防治仔猪腹泻的活体实验。方法以8头健康长白母猪所产的90头仔猪为实验材料,随机分组进行腹泻预防实验,设空白为对照。结果戊糖乳杆菌活菌制剂预防组的腹泻率为8.51%,对照组为78.57%,差异有非常显著性(P〈0.01)。对空白组出现腹泻的仔猪进行治疗比较实验,庆大霉素为对照。结果戊糖乳杆菌制剂治疗组的总有效率为100%,治愈率为76.47%,平均疗程5d;庆大霉素治疗组的有效率为93.75%,治愈率仅为31.25%,平均疗程6d,差异有显著性(P〈0.05)。此外,与对照比较,戊糖乳杆菌制剂预防组仔猪的精神状态好,毛色光亮,粪便成型;即使个别出现腹泻情况,连续灌服戊糖乳杆菌制剂2d(1次/d),即可痊愈。结论戊糖乳杆菌制剂可有效预防和治疗仔猪腹泻。  相似文献   

2.
AIMS: To characterize autolysis and autolytic system of the lactic acid bacterium Lactobacillus pentosus. METHODS AND RESULTS: Autolysis of nine Lact. pentosus strains was evaluated in buffer solution. Their peptidoglycan hydrolase profiles were examined by renaturing SDS-PAGE and revealed two major activity bands at 58 and 112 kDa. Specificity analysis indicated the presence of at least two different types of peptidoglycan hydrolase activities in Lact. pentosus 1091. CONCLUSIONS: Autolysis of Lact. pentosus was shown to be strain dependent and involvement of at least two different autolysins was evidenced. SIGNIFICANCE AND IMPACT OF THE STUDY: The autolytic system of Lact. pentosus was characterized for the first time and the data obtained could be used in the selection of strains of technological interest.  相似文献   

3.
We investigated the effect of ingesting Lactobacillus pentosus S-PT84 on the interferon-α (IFN-α) production from splenocytes and plasmacytoid dendritic cells by virus stimulation. IFN-α production by the Lactobacillus pentosus S-PT84 ingestion group was significantly greater under the virus-infected condition than that by the control group. Lactobacillus pentosus S-PT84 could enhance the production of IFN-α which is known as an important cytokine for preventing virus infection. It may therefore become a prophylactic tool against such virus infection.  相似文献   

4.
Lactobacillus pentosus is the most prevalent lactic acid bacterium in Spanish-style green olive fermentations. Here we present the draft genome sequence of L. pentosus IG1, a bacteriocin-producing strain with biotechnological and probiotic properties isolated from this food fermentations.  相似文献   

5.
The nonallosteric and allosteric L-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate K(m) values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate.  相似文献   

6.
Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added xylose in untreated HH after wet-oxidation, showed no inhibition on the lactic acid production by either Lb. pentosus or Lb. brevis. Lb. pentosus produced lactate corresponding to 88% of the theoretical maximum yield regardless of the hydrolysis method, whereas Lb. brevis produced 51% and 61% of the theoretical maximum yield after enzymatic, or acid treatment of HH, respectively. Individually, neither of the two strains were able to fully utilize the relatively broad spectra of sugars released by the acid and enzyme treatments; however, lactic acid production increased to 95% of the theoretical maximum yield by co-inoculation of both strains. Xylulose was the main sugar released after enzymatic treatment of HH with Celluclast. Lb. brevis was able to degrade xylobiose, but was unable to assimilate xylulose, whereas Lb. pentosus was able to assimilate xylulose but unable to degrade xylobiose.  相似文献   

7.
In this study, we succeeded in differentiating Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by means of recA gene sequence comparison. Short homologous regions of about 360 bp were amplified by PCR with degenerate consensus primers, sequenced, and analyzed, and 322 bp were considered for the inference of phylogenetic trees. Phylograms, obtained by parsimony, maximum likelihood, and analysis of data matrices with the neighbor-joining model, were coherent and clearly separated the three species. The validity of the recA gene and RecA protein as phylogenetic markers is discussed. Based on the same sequences, species-specific primers were designed, and a multiplex PCR protocol for the simultaneous distinction of these bacteria was optimized. The sizes of the amplicons were 318 bp for L. plantarum, 218 bp for L. pentosus, and 107 bp for L. paraplantarum. This strategy permitted the unambiguous identification of strains belonging to L. plantarum, L. pentosus, and L. paraplantarum in a single reaction, indicating its applicability to the speciation of isolates of the L. plantarum group.  相似文献   

8.
【背景】乳杆菌对众多致癌物具有吸附作用,但关于乳杆菌结合吸附苯并芘特性的研究并不多。【目的】探讨戊糖乳杆菌(Lactobacillus pentosus) ML32和植物乳杆菌(Lactobacillus plantarum)121对加工肉制品中苯并芘的吸附能力与吸附机制。【方法】基于HPLC检测菌体对不同模拟加工处理方式肉品中的苯并芘的吸附率。【结果】植物乳杆菌121和戊糖乳杆菌ML32对模拟油炸、烟熏或烧烤方式处理肉中苯并芘的吸附率均在30%以上。菌株121对直接烟熏肉中的苯并芘吸附率为41.21%,直接油炸肉中吸附率为38.71%,直接烧烤肉中吸附率为37.51%;菌株ML32对间接烟熏肉中的苯并芘吸附率为40.02%,间接烧烤肉中吸附率为38.01%。植物乳杆菌121适合于去除高温长时间加工肉中的苯并芘,戊糖乳杆菌ML32则相反。另外,乳杆菌细胞壁中的肽聚糖或许在吸附过程中发挥了主要作用。【结论】两株乳杆菌121和ML32具有吸附某些加工肉制品中苯并芘的效果,或许可以作为一种方法用于消除某些肉制品中因苯并芘过量带来的风险。  相似文献   

9.
Twenty-one strains, labelled Lactobacillus plantarum or Lact. plantarum -like, and isolated from different natural sources, were characterized by restriction fragment length polymorphism (RFLP) of the 16S rRNA gene using Hin dIII and Eco RI cleaved chromosomal DNA, together with Lact. plantarum ATCC 14917T, Lact. pentosus ATCC 8041T, Lact. plantarum ATCC 10776 and Lact. plantarum ATCC 8014. The fermentation patterns on API 50CH were recorded at 30°C and 37°C for all strains. The phenotypes were heterogeneous, and the ability to ferment 17 of the 49 carbohydrates varied. The fermentation of some carbohydrates, for example D-raffinose and D-arabitol, was temperature-dependent. Strains having identical API profiles were separated by the plasmid profile. All strains but one (affiliated to Lact. casei ) had identical 16S ribosomal DNA sequences ( Lact. plantarum/Lact. pentosus ). The RFLP study resulted in identical ribopatterns for 17 of the strains, including the type strain of Lact. plantarum (pattern A1). Four strains had related fragment patterns to that of Lact. plantarum sensu stricto; three of these strains had more than 60% DNA: DNA homology to the type strain of Lact. plantarum , and one had less than 50% DNA: DNA homology to Lact. plantarum ATCC 14917T. Two strains had fragment patterns similar to the type strain of Lact. pentosus , and they had more than 80% DNA: DNA homology to Lact. pentosus ATCC 8041T. One of the Lact. pentosus strains shared one band with the A1 pattern. The ribopatterns of Lact. plantarum were homogeneous (identical for 85% of the strains), irrespective of phenotype and source of isolation. RFLP of the 16S rRNA genes using Eco RI and Hin dIII might be used for species recognition of Lact. plantarum , but seems less suitable for strain typing.  相似文献   

10.
We have identified and characterized the D-xylose transport system of Lactobacillus pentosus. Uptake of D-xylose was not driven by the proton motive force generated by malolactic fermentation and required D-xylose metabolism. The kinetics of D-xylose transport were indicative of a low-affinity facilitated-diffusion system with an apparent K(m) of 8.5 mM and a V(max) of 23 nmol min(-1) mg of dry weight(-1). In two mutants of L. pentosus defective in the phosphoenolpyruvate:mannose phosphotransferase system, growth on D-xylose was absent due to the lack of D-xylose transport. However, transport of the pentose was not totally abolished in a third mutant, which could be complemented after expression of the L. curvatus manB gene encoding the cytoplasmic EIIB(Man) component of the EII(Man) complex. The EII(Man) complex is also involved in D-xylose transport in L. casei ATCC 393 and L. plantarum 80. These two species could transport and metabolize D-xylose after transformation with plasmids which expressed the D-xylose-catabolizing genes of L. pentosus, xylAB. L. casei and L. plantarum mutants resistant to 2-deoxy-D-glucose were defective in EII(Man) activity and were unable to transport D-xylose when transformed with plasmids containing the xylAB genes. Finally, transport of D-xylose was found to be the rate-limiting step in the growth of L. pentosus and of L. plantarum and L. casei ATCC 393 containing plasmids coding for the D-xylose-catabolic enzymes, since the doubling time of these bacteria on D-xylose was proportional to the level of EII(Man) activity.  相似文献   

11.
AIMS: The aim of this study was to identify potential souring agents, isolated from fermented plant material, by API 50 CHL assay and a molecular method based on polymerase chain reaction and colorimetric hybridization (PCR-ELISA). METHODS AND RESULTS: Forty-two strains of lactic acid bacteria derived from plant material were screened by taking advantage of API 50 CHL and PCR-ELISA. Oligonucleotide probes used for hybridization in PCR-ELISA were specific for lactobacilli, the Leuconostoc family, Lactobacillus pentosus/plantarum and Lactobacillus brevis. The hybrides were detected by a colour-developing reaction. Bacteria isolated from fermented cucumbers were identified as Lact. plantarum-related (Lact. plantarum and Lact. pentosus) and Leuconostoc species. Most of the strains isolated from sauerkraut were identified as Lact. pentosus/plantarum. CONCLUSIONS: Complementary results were obtained in the identification of bacterial strains, isolated from fermented cucumbers and sauerkraut, by API 50 CHL and PCR-ELISA. SIGNIFICANCE AND IMPACT OF THE STUDY: PCR-ELISA proved to be suitable for the screening of large numbers of bacterial isolates from fermented vegetables. This will be useful for the identification of strains suitable for the design of starter cultures for the fermentation of plant material.  相似文献   

12.
Two high-resolution genotypic techniques (RAPD-PCR and AFLP) were evaluated for their possibility to discriminate the species Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum and to type these taxa at the infra-species level. In total 23 strains of L. plantarum, three strains of L. pentosus, two strains of L. paraplantarum and two related strains for which the species assignment was not clear, were studied. For RAPD-PCR, suitable oligonucleotides and amplification conditions were selected and tested. For AFLP, a double digest of total genomic DNA was used and a subset of restriction fragments was selectively amplified and visualised using different primer combinations. Both methodologies generated, species-specific electrophoretic profiles. Moreover, the presence of distinct subgroups was revealed within the species L. plantarum.  相似文献   

13.
AIMS: To screen for phosphatase and phytase activities in Lactobacillus isolated from diverse ecosystems and to determine the biochemical properties and the factors that regulate the synthesis of the enzyme responsible for these activities in the selected strain, Lactobacillus pentosus CECT 4023. METHODS AND RESULTS: These activities were determined spectrophotometrically by using p-nitrophenyl phosphate and sodium phytate as substrates. They were maximal at the onset of the stationary phase of growth and repressed in the presence of high glucose concentration and inorganic phosphate. The enzyme responsible for these activities was an acid phosphatase (E.C.3.1.3.2.), with a molecular mass of 69 kDa. The activity was optimum at pH 5.0 and 50 degrees C. It hydrolysed mono-phosphorylated substrates and phytate, albeit at lower rates. It was inhibited by iodoacetic acid, phenyl-methylsulphonyl fluoride, di-sodium pyrophosphate and Ca+2 while activated by Co+2 and low concentrations of L-ascorbic acid and EDTA. CONCLUSIONS: Lactobacillus pentosus CECT 4023 produces a nonspecific acid phosphatase that hydrolyses a number of mono-phosphorylated substrates and phytate. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the phosphatase from L. pentosus CECT 4023 could partly contribute to reduce the phosphorylation degree of phytate and its derivatives and, thereby, their anti-nutrient properties during fermentation processes.  相似文献   

14.
Purification of xylulose 5-phosphate phosphoketolase (XpkA), the central enzyme of the phosphoketolase pathway (PKP) in lactic acid bacteria, and cloning and sequence analysis of the encoding gene, xpkA, from Lactobacillus pentosus MD363 are described. xpkA encodes a 788-amino-acid protein with a calculated mass of 88,705 Da. Expression of xpkA in Escherichia coli led to an increase in XpkA activity, while an xpkA knockout mutant of L. pentosus lost XpkA activity and was not able to grow on energy sources that are fermented via the PKP, indicating that xpkA encodes an enzyme with phosphoketolase activity. A database search revealed that there are high levels of similarity between XpkA and a phosphoketolase from Bifidobacterium lactis and between XpkA and a (putative) protein present in a number of evolutionarily distantly related organisms (up to 54% identical residues). Expression of xpkA in L. pentosus was induced by sugars that are fermented via the PKP and was repressed by glucose mediated by carbon catabolite protein A (CcpA) and by the mannose phosphoenolpyruvate phosphotransferase system. Most of the residues involved in correct binding of the cofactor thiamine pyrophosphate (TPP) that are conserved in transketolase, pyruvate decarboxylase, and pyruvate oxidase were also conserved at a similar position in XpkA, implying that there is a similar TPP-binding fold in XpkA.  相似文献   

15.
This study explored the feasibility of Lactobacillus pentosus as a live vehicle to deliver and express antigen. First of all, L.?pentosus transformed by electroporation with the plasmids pg611-6D (anchored) and pg612-6D (secretory) based on the xylose operon generated the recombinant strains rLppg611-6D and rLppg612-6D, respectively, expressing the D antigenic site of the spike (S) protein of Transmissible gastroenteritis virus (TGEV), for intragastric administration in mice. Secondly, we collected serum, fecal, nasal, ophthalmic, and vaginal samples from pre-immune mice and after the first immunization (on days 7, 14, 21, 28, 35, and 42) that were used to analyze the levels of immunoglobulins G and A against TGEV by using ELISA. In addition, a plaque reduction assay was performed using sera from groups pg611, pg612-6D, pg11-6D, and phosphate-buffered saline (blank control) to analyze TGEV-neutralizing antibody activity in vitro. A statistically significant difference in serum tests between groups demonstrated that rLppg612-6D induced better immunogenicity than rLppg611-6D, making rLppg612-6D the better candidate for oral vaccine. Taken together, L. pentosus possessed the potential to become a novel vector for mucosal vaccine in the future.  相似文献   

16.
Hemicellulosic hydrolyzates from trimming wastes of vine shoots were proposed as a carbon source for lactic acid production by Lactobacillus pentosus CECT-4023T (ATCC-8041). These hydrolyzates are composed mainly of glucose (12.0 g/L), xylose (17.5 g/L) and arabinose (4.3 g/L). Acetic acid, the main subproduct, started to be produced after all of the glucose was completely depleted, showing that the acetic acid coproduction came only from the xylose and arabinose consumption. In the absence of glucose, the L. pentosus pathway shifts from homo to heterofermentative. Thus, L. pentosus can be considered a facultative heterofermentative organism, degrading hexoses (glucose) via the Embden-Meyerhoff-Parnas pathway and pentoses (xylose and arabinose) via the phosphoketolase pathway. Hydrolyzates were vacuum evaporated to increase the initial sugars concentration up to 35.4 g/L of glucose, 52.3 g/L of xylose, and 13.0 g/L of arabinose. Under these conditions the lactic acid concentration reached 46.0 g/L (Q(P) = 0.933 g/L.h, Y(P/S) = 0.78 g/g; Y(P/S) theoretical = 91.7%) and a clear product inhibition was observed. Additional experiments with synthetic sugars, in the absence of inhibitory compounds, indicate that this inhibition must be attributed to the metabolic pathway but not to the inhibitory compounds present in the fermentation broth.  相似文献   

17.
The inability of two Lactobacillus strains to ferment D-xylose was complemented by the introduction of Lactobacillus pentosus genes encoding D-xylose isomerase, D-xylulose kinase, and a D-xylose catabolism regulatory protein. This result opens the possibility of using D-xylose fermentation as a food-grade selection marker for Lactobacillus spp.  相似文献   

18.
Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.  相似文献   

19.
In this study, we succeeded in differentiating Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by means of recA gene sequence comparison. Short homologous regions of about 360 bp were amplified by PCR with degenerate consensus primers, sequenced, and analyzed, and 322 bp were considered for the inference of phylogenetic trees. Phylograms, obtained by parsimony, maximum likelihood, and analysis of data matrices with the neighbor-joining model, were coherent and clearly separated the three species. The validity of the recA gene and RecA protein as phylogenetic markers is discussed. Based on the same sequences, species-specific primers were designed, and a multiplex PCR protocol for the simultaneous distinction of these bacteria was optimized. The sizes of the amplicons were 318 bp for L. plantarum, 218 bp for L. pentosus, and 107 bp for L. paraplantarum. This strategy permitted the unambiguous identification of strains belonging to L. plantarum, L. pentosus, and L. paraplantarum in a single reaction, indicating its applicability to the speciation of isolates of the L. plantarum group.  相似文献   

20.
The single amino acid replacement of Tyr52 with Leu drastically increased the activity of Lactobacillus pentosus NAD-dependent D-lactate dehydrogenase toward larger aliphatic or aromatic 2-ketoacid substrates by 3 or 4 orders of magnitude and decreased the activity toward pyruvate by about 30-fold, converting the enzyme into a highly active D-2-hydroxyisocaproate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号