首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the oxygen consumed per lumen of luminescence during oxidation of Cypridina luciferin in presence of luciferase, gives 11.4 x 10–5 gm. oxygen per lumen or 88 molecules per quantum of λ = 0.48µ, the maximum in the Cypridina luminescence spectrum. For reasons given in the text, the actual value is probably somewhat less than this, perhaps of the order of 6.48 x 10–5 gm. per lumen or 50 molecules of oxygen and 100 molecules of luciferin per quantum. It is quite certain that more than 1 molecule per quantum must react. On the basis of a reaction of the type: luciferin + 1/2 O2 = oxyluciferin + H2O + 54 Cal., it is calculated that the total efficiency of the luminescent process, energy in luminescence/heat of reaction, is about 1 per cent; and that a luciferin solution containing 4 per cent of dried Cypridina material should rise in temperature about 0.001°C. during luminescence, and contain luciferin in approximately 0.00002 molecular concentration.  相似文献   

2.
1. Two methods are given for measuring the rate of diffusion of CO2 in tissue membranes. Methods are also given for the determination of tissue thickness and the absorption coefficient for CO2 in tissues. 2. The values obtained for the permeability constant (P x 104) at 22°C. for CO2 in the following tissues are:—frog skin, 3.05; connective tissue (dog), 2.65; smooth muscle (cat), 5.00; frog muscle, 5.29; striated muscle (dog), 4.70. P is expressed as cc. per cm.2 per minute under a pressure gradient of one atmosphere per cm. 3. Evidence is presented to show that in a "steady state" bicarbonate contributes a negligible amount to the diffusion of CO2. 4. The absorption coefficient for CO2 in frog skin is 0.73 cc. per cc. and for frog muscle 0.78 cc. per cc. 5. In all of the tissues studied the diffusion of CO2 is slower than in water. The diffusion coefficients (K x 104 in cm.2/minute) at 22°C. for tissues as compared with water are:—water (16°C.), 9.5 (Hüfner, 1897); frog skin, 4.1; connective tissue, 3.7; frog muscle, 6.8; striated muscle (dog), 6.0; smooth muscle (cat), 6.4. 6. The time course of saturation of a tissue with CO2 is altered in the presence of available base. Non-acidified tissues saturate more slowly than acidified tissues and the rate of saturation is dependent on the CO2 tension.  相似文献   

3.
Investigations of the osmotic properties of oyster eggs by a diffraction method for measuring volumes have led to the following conclusions: 1. The product of cell volume and osmotic pressure is approximately constant, if allowance is made for osmotically inactive cell contents (law of Boyle-van''t Hoff). The space occupied by osmotically inactive averages 44 per cent of cell volume. 2. Volume changes over a wide range of pressures are reversible, indicating that the semipermeability of the cell during such changes remains intact. 3. The kinetics of endosmosis and of exosmosis are described by the equation, See PDF for Equation, where dV is rate of volume change; S, surface area of cell, (P-Pe), the difference in osmotic pressure between cell interior and medium, and K, the permeability of the cell to water. 4. Permeability to water during endosmosis is 0.6µ3 of water per minute, per square micron of cell surface, per atmosphere of pressure. The value of permeability for exosmosis is closely the same; in this respect the egg cell of the oyster appears to be a more perfect osmometer than the other marine cells which have been studied. Permeability to water computed by the equation given above is in good agreement with computations by the entirely different method devised by Jacobs. 5. Permeability to diethylene glycol averages 27.2, and to glycerol 20.7. These values express the number of mols x 10–15 which enter per minute through each square micron of cell surface at a concentration difference of 1 mol per liter and a temperature of 22.5°C. 6. Values for permeability to water and to the solutes tested are considerably higher for the oyster egg than for other forms of marine eggs previously examined. 7. The oyster egg because of its high degree of permeability is a natural osmometer particularly suitable for the study of the less readily penetrating solutes.  相似文献   

4.
2.5 and 1.25 per cent gelatin have been titrated potentiometrically in the absence of salts and in the presence of two concentrations (0.0750 and 0.0375µ) of NaCl, MgCl2, K2SO4, and MgSO4. The data have been used to calculate values of ± S = vz – (v – 1)z, where vz = v 2 – (v 2v) rx/18. The maximum and minimum values of S with NaCl were used to calculate the mean distance (rx) between like charges in gelatin. This is found to be 18 Å.u. or over (between acid or basic groups) which agrees with the probable value and the titration index dispersion. Thus the data with NaCl are shown to be normal and to obey the equation found to hold for simple weak electrolytes; namely, pK'' – pK = Sa See PDF for Equation where S is related to the valence and distance by the above equations. Using the NaCl data as a standard the deviations (ΔS) produced by the other salts are calculated and are found to agree quantitatively with the deviations calculated from equations derived for the simple weak electrolytes. This shows that in gelatin, as in the simple electrolytes, the deviations are related to the "apparent valences" (values which are a function of the true valence and the distance between the groups). The maximum "apparent valences" of gelatin are 2.4 for acid groups (in alkaline solution) and 1.8 for basic groups (in acid solution). These values correspond to the hypothetical condition of zero distance between the groups. They have no physical significance but have a practical utility first as mentioned above, and second in that they may be used in the unmodified Debye-Hückel equation to give the maximum effect of gelatin on the ionic strength. The true effect is probably even lower than these values would indicate. The data indicate that gelatin is a weak polyvalent ampholyte having distant groups and that the molecule has an arborescent structure with interstices permeated by molecules of the solvent and other solutes. The size and shape probably vary with the pH.  相似文献   

5.
A method is described for determining the diffusion coefficient of solutes by determining the rate of passage of the solute through a thin porous membrane between two solutions of different concentration. The method has been used to determine the diffusion coefficient of carbon monoxide hemoglobin. This was found to be 0.0420 ± 0.0005 cm.2 per day at 5°C. The molecular weight of carbon monoxide hemoglobin calculated by means of Einstein''s equation from this quantity is 68,600 ± 1,000.  相似文献   

6.
1. The chlorophyll-protein compound of the spinach leaf has been studied in the air-driven ultracentrifuge using the Svedberg light-absorption method, and a direct-reading refractive index method. 2. When the untreated extracts are centrifuged at low speeds, the green protein sediments with a purely random spread of particle sizes confirming the fact that the protein is not in true solution. 3. In the presence of digitonin, bile salts, and sodium desoxycholate, the extracts are clarified. These detergents split the chlorophyll from the protein and the protein itself shows a sedimentation constant of 13.5 x 10–13 equivalent to a molecular weight of at least 265,000 as calculated from Stokes'' law. This probably represents the minimum size of the protein in native form. 4. Sodium dodecyl sulfate, a detergent which also clarifies the leaf extracts, shows a different behavior. The prosthetic group remains attached to the protein but the protein is split into smaller units. In 0.25 per cent SDS, S 20 is 2.6 x 10–13 over a pH range of 5 to 9, although at the acid pH chlorophyll is converted to phaeophytin. In 2.5 per cent SDS, S 20 is 1.7 x 10–13 suggesting a further splitting of the protein. 5. No differences in behavior were found for the various chloroplast pigments.  相似文献   

7.
1. The effects of a number of respiratory inhibiting agents on the cell division of fertilized eggs of Arbacia punctulata have been determined. For eggs initially exposed to the reagents at 30 minutes after fertilization at 20°C., the levels of oxygen consumption prevailing in the minimum concentrations of reagents which produced complete cleavage block were (as percentages of the control): In 0.4 per cent O2-99.6 per cent N2, 32; in 0.7 per cent O2-99.3 per cent CO, 32; in 1.6 x 10–4 M potassium cyanide, 34; in 1 x 10–3 M phenylurethane, 70; in 4 x 10–3 M 5-isoamyl-5-ethyl barbituric acid, 20; in 3 x 10–4 M iodoacetic acid, 53. 2. The carbon monoxide inhibition of oxygen consumption and cell division was reversed by light. The percentage inhibition of oxygen consumption by carbon monoxide in the dark is described by the usual mass action equation with K, the inhibition constant, equal to approximately 60, as compared to values of 5 to 10 for yeast and muscle. In 20 per cent O2-80 per cent CO in the dark there was a slight stimulation of oxygen consumption, averaging 20 per cent. 3. Spectroscopic examination of fertilized and unfertilized Arbacia eggs reduced by hydrosulfite revealed no cytochrome bands. The thickness and density of the egg suspension was such as to indicate that, if cytochrome is present at all, the amount in Arbacia eggs is extremely small as compared to that in other tissues having a comparable rate of oxygen consumption. 4. Three reagents poisoning copper catalyses, potassium dithio-oxalate (10–2 M), diphenylthiocarbazone (10–4 M), and isonitrosoacetophenone (2 x 10–3 M) produced no inhibition of division of fertilized Arbacia eggs. 5. These results indicate that the respiratory processes required to support division in the Arbacia egg may perhaps differ in certain essential steps from the principal respiratory processes in yeast and muscle.  相似文献   

8.
The data of the author and Uhlig, and new data, on the conductivity of sodium and of potassium guaiacolates in guaiacol at 25° have been computed with an improved conductance equation which is valid to somewhat higher concentrations than the equations formerly used. The new constants are, Λ0 = 9.0, K = 2.8 x 10–5 for sodium guaiacolate and Λ0 = 9.5, K = 3.4 x 10–5 for potassium guaiacolate.  相似文献   

9.
1. The solubility in water of purified, uncombined casein has previously been reported to be 0.11 gm. in 1 liter at 25°C. This solubility represents the sum of the concentrations of the casein molecule and of the soluble ions into which it dissociates. 2. The solubility of casein has now been studied in systems containing the protein and varying amounts of sodium hydroxide. It was found that casein forms a well defined soluble disodium compound, and that solubility was completely determined by (a) the solubility of the casein molecule, and (b) the concentration of the disodium casein compound. 3. In our experiments each mol of sodium hydroxide combined with approximately 2,100 gm. of casein. 4. The equivalent combining weight of casein for this base is just half the minimal molecular weight as calculated from the sulfur and phosphorus content, and one-sixth the minimal molecular weight calculated from the tryptophane content of casein. 5. From the study of systems containing the protein and very small amounts of sodium hydroxide it was possible to determine the solubility of the casein molecule, and also the degree to which it dissociated as a divalent acid and combined with base. 6. Solubility in such systems increased in direct proportion to the amount of sodium hydroxide they contained. 7. The concentration of the soluble casein compound varied inversely as the square of the hydrogen ion concentration, directly as the solubility of the casein molecule, Su, and as the constants Ka1 and Ka2 defining its acid dissociation. 8. The product of the solubility of the casein molecule and its acid dissociation constants yields the solubility product constant, Su·Ka1·Ka2 = 2.2 x 10–12 gm. casein per liter at 25°C. 9. The solubility of the casein molecule has been estimated from this constant, and also from the relation between the solubility of the casein and the sodium hydroxide concentration, to be approximately 0.09 gm. per liter at 25°C. 10. The product of the acid dissociation constants, Ka1 and Ka2, must therefore be 24 x 10–12N. 11. It is believed that these constants completely characterize the solubility of casein in systems containing the protein and small amounts of sodium hydroxide.  相似文献   

10.
The authors wish to correct an error in the paper "The behavior of the nucleic acids during the early development of the sea urchin egg (Arbacia)" (J. Gen. Physiol., 1947–48, 31, 203). Owing to an oversight, the figures for the amounts of various P fractions in a single Arbacia egg have been erroneously expressed in γ x 10–3 units (Tables I and II, page 205; the last two lines of page 206). The figures should have been expressed in γ x 10–5 units. Thus, the fertilized Arbacia egg contains an average of 20 γ x 10–5 ribonucleic acid P and 0.7 to 1 γ x 10–5 desoxyribonucleic acid P.  相似文献   

11.
1. Unfertilized eggs of Chaetopterus consume about 2.4 mm.3 O2 per hour per 10 mm.3 eggs at 21°C. 2. In the 1st hour after fertilization, the fertilized eggs consume oxygen at about 53 or 54 per cent of this rate, which is about 1.3 mm.3 O2 per hour per 10 mm.3 eggs at 21°C. 3. For the first 6 hours after fertilization, at 21°C., the curve of the rate of oxygen consumption is slightly asymmetrically sigmoid. The prefertilization rate is regained between 4½ and 5 hours after fertilization. Soon after 6 hours, ciliary activity begins, and the rate of oxygen consumption rises rapidly. 4. The unfertilized eggs of Arbacia punctulata consume about 0.36–0.5 mm.3 O2 per hour per 10 mm.3 eggs at 21°C. The absolute determination is difficult as these eggs are highly sensitive to shaking in the manometer vessels, and these difficulties are discussed. 5. The fertilized eggs of Arbacia punctulata consume oxygen at the rate of about 2.0 mm.3 O2 per hour per 10 mm.3 21°C. At 1 hour after fertilization the rate is already rising. 6. A comparison of the absolute rates of oxygen consumption, and the changes in rate at fertilization of these and a number of other eggs, together with a theoretical discussion, and a discussion of discrepancies in measurements on the eggs of Arbacia punctulata, is contained in the fifth paper of this series (21).  相似文献   

12.
1. The minimum lethal dose of x-rays for Euplotes taylori was determined. Under the conditions of this investigation a 220 second exposure (2110 Roentgen units per second) was required to kill the protozoon. Much less exposure was sufficient to kill the associated bacteria. This difference in resistance permits the sterilization of protozoa with comparative ease. 2. Irradiation of Euplotes for 100 to 220 seconds caused a complete but temporary cessation of ciliary activity in many of the organisms, the percentage so affected increasing with the length of irradiation. 3. Pure cultures of Pseudomonas fluorescens and Bacillus coli, K 13, separately irradiated, were found to be killed much more readily than protozoa,—the former in 15 seconds exposure (2530 Roentgen units per second) and the latter in 45 seconds. 4. The death of these organisms by irradiation was not due to the action of toxic products in the medium since separately irradiated media were not found to be toxic. 5. Irradiated bacteria were found unsatisfactory for the nutrition of Euplotes, previously sterilized either by irradiation or washing.  相似文献   

13.
Ammonia secretion by the collecting duct (CD) is critical for acid-base homeostasis and, when defective, causes distal renal tubular acidosis (dRTA). The Rhesus protein RhCG mediates NH3 transport as evident from cell-free and cellular models as well as from Rhcg-null mice. Here, we investigated in a Rhcg mouse model the metabolic effects of Rhcg haploinsufficiency, the role of Rhcg in basolateral NH3 transport, and the mechanisms of adaptation to the lack of Rhcg. Both Rhcg+/+ and Rhcg+/− mice were able to handle an acute acid load, whereas Rhcg−/− mice developed severe metabolic acidosis with reduced ammonuria and high mortality. However, chronic acid loading revealed that Rhcg+/− mice did not fully recover, showing lower blood HCO3 concentration and more alkaline urine. Microperfusion studies demonstrated that transepithelial NH3 permeability was reduced by 80 and 40%, respectively, in CDs from Rhcg−/− and Rhcg+/− mice compared with controls. Basolateral membrane permeability to NH3 was reduced in CDs from Rhcg−/− mice consistent with basolateral Rhcg localization. Rhcg−/− responded to acid loading with normal expression of enzymes and transporters involved in proximal tubular ammoniagenesis but reduced abundance of the NKCC2 transporter responsible for medullary accumulation of ammonium. Consequently, tissue ammonium content was decreased. These data demonstrate a role for apical and basolateral Rhcg in transepithelial NH3 transport and uncover an incomplete dRTA phenotype in Rhcg+/− mice. Haploinsufficiency or reduced expression of RhCG may underlie human forms of (in)complete dRTA.  相似文献   

14.
Water movement across plant tissues occurs along two paths: from cell-to-cell and in the apoplasm. We examined the contribution of these two paths to the kinetics of water transport across the parenchymatous midrib tissue of the maize (Zea mays L.) leaf. Water relations parameters (hydraulic conductivity, Lp; cell elastic coefficient, ε; half-time of water exchange for individual cells, T½) of individual parenchyma cells determined with the pressure probe varied in different regions of the midrib. In the adaxial region, Lp = (0.3 ± 0.3)·10−5 centimeters per second per bar, ε = 103 ± 72 bar, and T½ = 7.9 ± 4.8 seconds (n = seven cells); whereas, in the abaxial region, Lp = (2.5 ± 0.9)·10−5 centimeters per second per bar, ε = 41 ± 9 bar, and T½ = 1.3 ± 0.5 seconds (n = 7). This zonal variation in Lp, ε, and T½ indicates that tissue inhomogeneities exist for these parameters and could have an effect on the kinetics of water transport across the tissue.

The diffusivity of the tissue to water (Dt) obtained from the sorption kinetics of rehydrating tissue was Dt = (1.1 ± 0.4)·10−6 square centimeters per second (n = 6). The diffusivity of the cell-to-cell path (Dc) calculated from pressure probe data ranged from Dc = 0.4·10−6 square centimeters per second in the adaxial region to Dc = 6.1·10−6 square centimeters per second in the abaxial region of the tissue. Dt Dc suggests substantial cell-to-cell transport of water occurred during rehydration. However, the tissue diffusivity calculated from the kinetics of pressure-propagation across the tissue (Dt′) was Dt′ = (33.1 ± 8.0)·10−6 square centimeters per second (n = 8) and more than 1 order of magnitude larger than Dt. Also, the hydraulic conductance of the midrib tissue (Lpm per square centimeter of surface) estimated from pressure-induced flows across several parenchyma cell layers was Lpm = (8.9 ± 5.6)·10−5 centimeters per second per bar (n = 5) and much larger than Lp.

These results indicate that the preferential path for water transport across the midrib tissue depends on the nature of the driving forces present within the tissue. Under osmotic conditions, the cell-to-cell path dominates, whereas under hydrostatic conditions water moves primarily in the apoplasm.

  相似文献   

15.
Understanding mechanisms of antibiotic failure is foundational to combating the growing threat of multidrug‐resistant bacteria. Prodrugs—which are converted into a pharmacologically active compound after administration—represent a growing class of therapeutics for treating bacterial infections but are understudied in the context of antibiotic failure. We hypothesize that strategies that rely on pathogen‐specific pathways for prodrug conversion are susceptible to competing rates of prodrug activation and bacterial replication, which could lead to treatment escape and failure. Here, we construct a mathematical model of prodrug kinetics to predict rate‐dependent conditions under which bacteria escape prodrug treatment. From this model, we derive a dimensionless parameter we call the Bacterial Advantage Heuristic (BAH) that predicts the transition between prodrug escape and successful treatment across a range of time scales (1–104 h), bacterial carrying capacities (5 × 104–105 CFU/µl), and Michaelis constants (KM  = 0.747–7.47 mM). To verify these predictions in vitro, we use two models of bacteria‐prodrug competition: (i) an antimicrobial peptide hairpin that is enzymatically activated by bacterial surface proteases and (ii) a thiomaltose‐conjugated trimethoprim that is internalized by bacterial maltodextrin transporters and hydrolyzed by free thiols. We observe that prodrug failure occurs at BAH values above the same critical threshold predicted by the model. Furthermore, we demonstrate two examples of how failing prodrugs can be rescued by decreasing the BAH below the critical threshold via (i) substrate design and (ii) nutrient control. We envision such dimensionless parameters serving as supportive pharmacokinetic quantities that guide the design and administration of prodrug therapeutics.  相似文献   

16.
From the solubility minimum the value of the basic ionization constant of sulfanilic acid is shown to lie probably between the values 1.7 x 10–15 and 3.2 x 10–15. From solubility measurements the value of this same constant is shown to lie probably between 2.0 and 2.2 x 10–15, and the isoelectric point of sulfanilic acid is thus at a cH of 0.056 or a pH of 1.25. From conductivity ratios the acid ionization constant of sulfanilic acid is shown to be 7.05 x 10–4 at room temperature (21°C.). Calculations are made, from data published in preceding papers, of the ionization constants of glycine, Ka being 2.3 x 10–10, and Kb being 2.2 x 10–12.  相似文献   

17.
Measurements have been made of the solubility at 25°C. of tyrosine in hydrochloric acid and in sodium hydroxide solutions varying from 0.001 to 0.05 M, and also in distilled water. The pH of the saturated solutions was measured with the hydrogen electrode. The following values for the ionization constants of tyrosine have been obtained from the measurements: kb = 1.57 x 10–12, ka1 = 7.8 x 10–10, ka2 = 8.5 x 10–11. The changes in solubility with pH can be satisfactorily explained by the use of these ionization constants.  相似文献   

18.
We have studied the CO2 permeability of the erythrocyte membrane of the rat using a mass spectrometric method that employs 18 O-labelled CO2. The method yields, in addition, the intraerythrocytic carbonic anhydrase activity and the membrane HCO3 permeability. For normal rat erythrocytes, we find at 37 °C a CO2 permeability of 0.078 ± 0.015 cm/s, an intracellular carbonic anhydrase activity of 64,100, and a bicarbonate permeability of 2.1 × 10−3 cm/s. We studied whether the rat erythrocyte membrane possesses protein CO2 channels similar to the human red cell membrane by applying the potential CO2 channel inhibitors pCMBS, Dibac, phloretin, and DIDS. Phloretin and DIDS were able to reduce the CO2 permeability by up to 50%. Since these effects cannot be attributed to the lipid part of the membrane, we conclude that the rat erythrocyte membrane is equipped with protein CO2 channels that are responsible for at least 50% of its CO2 permeability.  相似文献   

19.
Many pathogenic microorganisms have evolved hemoglobin-mediated nitric oxide (NO) detoxification mechanisms, where a globin domain in conjunction with a partner reductase catalyzes the conversion of toxic NO to innocuous nitrate. The truncated hemoglobin HbN of Mycobacterium tuberculosis displays a potent NO dioxygenase activity despite lacking a reductase domain. The mechanism by which HbN recycles itself during NO dioxygenation and the reductase that participates in this process are currently unknown. This study demonstrates that the NADH-ferredoxin/flavodoxin system is a fairly efficient partner for electron transfer to HbN with an observed reduction rate of 6.2 μm/min−1, which is nearly 3- and 5-fold faster than reported for Vitreoscilla hemoglobin and myoglobin, respectively. Structural docking of the HbN with Escherichia coli NADH-flavodoxin reductase (FdR) together with site-directed mutagenesis revealed that the CD loop of the HbN forms contacts with the reductase, and that Gly48 may have a vital role. The donor to acceptor electron coupling parameters calculated using the semiempirical pathway method amounts to an average of about 6.4 10−5 eV, which is lower than the value obtained for E. coli flavoHb (8.0 10−4 eV), but still supports the feasibility of an efficient electron transfer. The deletion of Pre-A abrogated the heme iron reduction by FdR in the HbN, thus signifying its involvement during intermolecular interactions of the HbN and FdR. The present study, thus, unravels a novel role of the CD loop and Pre-A motif in assisting the interactions of the HbN with the reductase and the electron cycling, which may be vital for its NO-scavenging function.  相似文献   

20.
The transport of Na+ in mature Eurycea oocytes was studied by quantitative radioautography of 22Na+ using techniques suitable for localization of diffusible solutes, together with conventional extractive techniques. Intracellular Na+ consisted of three kinetic fractions: a cytoplasmic fast fraction of about 8.5 µeq/ml H2O; a cytoplasmic slow fraction of about 58.7 µeq/ml H2O; and a nuclear fast fraction of about 11.1 µeq/ml H2O. A nuclear slow fraction, if it exists, does not exceed 5% of the cytoplasmic. The fast fractions represent freely diffusible Na+ in the two compartments; the nuclear solvent space is 1.3 times the cytoplasmic. The flux of both fast fractions is determined by the permeability of the cortical membrane, with neither the nuclear membrane nor diffusion in the cytoplasm detectably slowing the flux. The cytoplasmic slow fraction is interpreted to represent Na+ bound to nondiffusible constituents which are excluded from the nucleus; these may be yolk platelets, although the widespread observation of Na+ binding in other cells, and the high Na+/K+ selectivity, argues against simple ion-binding to the yolk phosphoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号