首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sound generation based on a pulmonary mechanism typically occurs during the expiratory phase of respiration. Phonation during inspiration has been postulated for the calls of some amphibians and for exceptional sounds in some human languages. No direct evidence exists for phonation during inspiration in birds, but such a mechanism has been proposed to explain very long uninterrupted songs. Here, we report the first physiological evidence for inspiratory sound production in the song of the zebra finch (Taeniopygia guttata). Motor gestures of the vocal and respiratory muscles leading to the production of inspiratory phonation differ from those of silent inspirations during song as well as from those leading to phonation during expiration. Inspiratory syllables have a high fundamental frequency, which makes them acoustically distinct from all other zebra finch song syllables. Furthermore, young zebra finches copy these inspiratory syllables from their tutor song, producing them during inspiration. This suggests that physical limitations confine the production of these sounds to the inspiratory phase in zebra finches. These findings directly demonstrate how novel respiratory-vocal coordination can enhance the acoustic structure of birdsong, and thus provide insight into the evolution of song complexity.  相似文献   

2.
The crystallized structure of adult zebra finch (Taeniopygia guttata) song is modifiable if sensory feedback is altered during sound production. Such song plasticity has been studied by examining acoustic modifications to the motif; however, the underlying changes to the vocal motor patterns of these acoustic modifications have not been addressed. Adult birds in two age categories (young=90-120 days or middle aged 150-250 days) that sang crystallized song were used in the experiment. Vocal motor patterns were monitored by recording respiratory air sac pressure before, during, and after song plasticity was induced by partial or complete reduction of phonation (i.e., "partial muting"). Birds were recorded until changes in air sac pressure patterns underlying the song structure were observed (up to 160 days). Young adult birds were more likely to insert shorter duration (<125 ms) expiratory pulses (EPs) into the motif than middle-aged adults. These shorter duration EPs were produced with a unique pressure pattern relative to the intact song, and therefore appeared to be generated by novel motor gestures. Stuttering (atypical repetition of an EP) was observed when these novel EPs were inserted into the motif, regardless of age. The EP of the distance call, which is also a learned vocalization in zebra finches, showed a similar reduction in duration if EPs were also shortened in the song. The emergence of shorter duration EPs was not related to sound production, or nonspecific effects of the surgical procedure, which suggests an age-dependent neural process for song plasticity.  相似文献   

3.
Song development and song pattern formation in oscine songbirds are influenced by steroid hormones such as estrogens and androgens, and the control of vocal pattern generation is mediated via a network of interconnected vocal and respiratory nuclei. The main components of the respiratory part of the network are the expiratory and inspiratory premotor nuclei, known as retroambigualis (RAm) and the rostral ventral respiratory group (rVRG), respectively. These respiratory components play an integral role in song production either by providing the expiratory pulses of air required for each and every song syllable, or by controlling inspiration between syllables in the form of minibreaths, and between phrases for major replenishments of air. Here we analyze the distribution of androgen receptors (AR) and estrogen receptors (ER) in the midbrain and hindbrain of male and female zebra finches, and male canaries and green finches, using in situ hybridization with cRNA probes of the zebra finch AR and ER. ERmRNA was not expressed in any of the respiratory-vocal nuclei of the midbrain or hindbrain, but ARmRNA was expressed in the tracheosyringeal motor nucleus (nXIIts) and in RAm and rVRG. The size of the ARmRNA defined RAm and rVRG was similar in male and female zebra finches, but the size of ARmRNA defined nXIIts was slightly sexual dimorphic. Previously undescribed areas of ARmRNA expression outside the respiratory-vocal network in the brain stem were the nucleus semilunaris and layers 10–12 of the optic tectum. ARmRNA expression in the respiratory-vocal nuclei of adult male songbirds, adult female zebra finches, and juvenile zebra finches suggests that the temporal pattern of learned and unlearned vocalizations is sensitive to androgen-dependent mechanisms mediated by RAm and rVRG. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 865–876, 1997  相似文献   

4.
The crystallized structure of adult zebra finch (Taeniopygia guttata) song is modifiable if sensory feedback is altered during sound production. Such song plasticity has been studied by examining acoustic modifications to the motif; however, the underlying changes to the vocal motor patterns of these acoustic modifications have not been addressed. Adult birds in two age categories (young = 90–120 days or middle aged 150–250 days) that sang crystallized song were used in the experiment. Vocal motor patterns were monitored by recording respiratory air sac pressure before, during, and after song plasticity was induced by partial or complete reduction of phonation (i.e., “partial muting”). Birds were recorded until changes in air sac pressure patterns underlying the song structure were observed (up to 160 days). Young adult birds were more likely to insert shorter duration (<125 ms) expiratory pulses (EPs) into the motif than middle‐aged adults. These shorter duration EPs were produced with a unique pressure pattern relative to the intact song, and therefore appeared to be generated by novel motor gestures. Stuttering (atypical repetition of an EP) was observed when these novel EPs were inserted into the motif, regardless of age. The EP of the distance call, which is also a learned vocalization in zebra finches, showed a similar reduction in duration if EPs were also shortened in the song. The emergence of shorter duration EPs was not related to sound production, or nonspecific effects of the surgical procedure, which suggests an age‐dependent neural process for song plasticity. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

5.
In songbirds, the ontogeny of singing behavior shows strong parallels with human speech learning. As in humans, development of learned vocal behavior requires exposure to an acoustic model of species‐typical vocalizations, and, subsequently, a sensorimotor practice period after which the vocalization is produced in a stereotyped manner. This requires mastering motor instructions driving the vocal organ and the respiratory system. Recently, it was shown that, in the case of canaries (Serinus canaria), the diverse syllables, constituting the song, are generated with air sac pressure patterns with characteristic shapes, remarkably, those belonging to a very specific mathematical family. Here, we treated juvenile canaries with testosterone at the onset of the sensorimotor practice period. This hormone exposure accelerated the development of song into stereotyped adultlike song. After 20 days of testosterone treatment, subsyringeal air sac pressure patterns of song resembled those produced by adults, while those of untreated control birds of the same age did not. Detailed temporal structure and modulation patterns emerged rapidly with testosterone treatment, and all previously identified categories of adult song were observed. This research shows that the known effect of testosterone on the neural circuits gives rise to the stereotyped categories of respiratory motor gestures. Extensive practice of these motor patterns during the sensorimotor phase is not required for their expression. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 943–960, 2010  相似文献   

6.
The relationship between the motor and acoustic similarity of song was examined in brown thrashers (Toxostoma rufum) and grey catbirds (Dumetella carolinensis) (family Mimidae), which have very large song repertoires and sometimes mimic other species. Motor similarity was assessed by cross correlation of syringeal airflows and air sac pressures that accompany sound production. Although most syllables were sung only once in the song analyzed, some were repeated, either immediately forming a couplet, or after a period of intervening song, as a distant repetition. Both couplets and distant repetitions are produced by distinctive, stereotyped motor patterns. Their motor similarity does not decrease as the time interval between repetitions increases, suggesting that repeated syllables are stored in memory as fixed motor programs. The acoustic similarity between nonrepeated syllables, as indicated by correlation of their spectrograms, has a significant positive correlation with their motor similarity. This correlation is weak, however, suggesting that there is no simple linear relationship between motor action and acoustic output and that similar sounds may sometimes be produced by different motor mechanisms. When compared without regard to the sequence in which they are sung, syllables paired for maximum spectral similarity form a continuum with repeated syllables in terms of their acoustic and motor similarity. The prominence of couplets in the “syntax” of normal song is enhanced by the dissimilarity of successive nonrepeated syllables that make up the remainder of the song. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Sounds produced in the avian vocal organ may be modified by filter properties of the upper vocal tract. Possible mechanisms to actively control filter characteristics include movements of the beak, tongue, and larynx and adjustments of tracheal length. We investigated whether length changes of the trachea are a likely mechanism for adjusting upper vocal tract filter properties during song in the zebra finch (Taeniopygia guttata). Tracheal length was monitored at the basal end using sonomicrometry and was recorded together with subsyringeal air sac pressure and acoustic output. Tracheal shortening occurred at the onset of song bouts, and during each motif the tracheal length decreased during expiratory pressure pulses and increased during the short inspirations. A bilateral tracheal syringeal nerve cut confirmed that the initial shortening at the onset of the song bout is an active shortening of the trachea (i.e., mediated by syringeal muscle activity). The modulation of length during the motif was not affected by the denervation and is most likely driven by the pressurization of the interclavicular air sac. The absolute length change during the motif was small (<0.2 mm) and not clearly related to acoustic features of the song. For example, some high-frequency syllables, which are generated during inspiration, were accompanied by tracheal elongation. Because this elongation shifts tube resonances to lower frequencies, it is inconsistent with an active adjustment of length to enhance high frequency sounds. The small magnitude and inconsistent nature of dynamic tracheal length changes during song make it unlikely that they significantly affect vocal tract filter properties if the trachea is modeled as a rigid tube.  相似文献   

8.
Biological predispositions in learning can bias and constrain the cultural evolution of social and communicative behaviors (e.g., speech and birdsong), and lead to the emergence of behavioral and cultural “universals.” For example, surveys of laboratory and wild populations of zebra finches (Taeniopygia guttata) document consistent patterning of vocal elements (“syllables”) with respect to their acoustic properties (e.g., duration, mean frequency). Furthermore, such universal patterns are also produced by birds that are experimentally tutored with songs containing randomly sequenced syllables (“tutored birds”). Despite extensive demonstrations of learning biases, much remains to be uncovered about the nature of biological predispositions that bias song learning and production in songbirds. Here, we examined the degree to which “innate” auditory templates and/or biases in vocal motor production contribute to vocal learning biases and production in zebra finches. Such contributions can be revealed by examining acoustic patterns in the songs of birds raised without sensory exposure to song (“untutored birds”) or of birds that are unable to hear from early in development (“early‐deafened birds”). We observed that untutored zebra finches and early‐deafened zebra finches produce songs with positional variation in some acoustic features (e.g., mean frequency) that resemble universal patterns observed in tutored birds. Similar to tutored birds, early‐deafened birds also produced song motifs with alternation in acoustic features across adjacent syllables. That universal acoustic patterns are observed in the songs of both untutored and early‐deafened birds highlights the contribution motor production biases to the emergence of universals in culturally transmitted behaviors.  相似文献   

9.
Summary Male canaries (Serinus canaria) produce songs of long duration compared to the normal respiratory cycle. Each phrase in a song contains repetitions of a particular song syllable, with repetition rates for different syllables ranging from 3 to 35 notes/s. We measured tracheal airflow and air sac pressure in order to investigate respiratory dynamics during song.Song syllables (11–280 ms) are always accompanied by expiratory tracheal airflow. The silent intervals (15–90 ms) between successive syllables are accompanied by inspiration, except for a few phrases where airflow ceases instead of reversing. Thus, the mini-breath respiratory pattern is used most often by the five birds studied and pulsatile expiration is used only occasionally.Songs and phrases accompanied by minibreaths were of longer duration than those accompanied by pulsatile expiration, presumably because the animal's finite vital capacity is not a limiting factor when the volume of air expired for one note is replaced by inspiration prior to the next. Pulsatile expiration was used for only a few syllable types from one bird that were produced at higher repetition rates than syllables accompanied by mini-breaths. We suggest that male canaries switch to pulsatile expiration only when the syllable repetition rate is too high (greater than about 30 Hz) for them to achieve mini-breaths.Changes in syringeal configuration that may accompany song are discussed, based on the assumption that changes in the ratio of subsyringeal (air sac) pressure to tracheal flow rate reflect changes in syringeal resistance.  相似文献   

10.
Matters of life and death in the songbird forebrain.   总被引:1,自引:0,他引:1  
Male zebra finches learn a specific vocal pattern during a restricted period of development. They produce that song in stereotyped form throughout adulthood, and are unable to learn new song patterns. Development of the neural substrate for song learning and behavior is delayed relative to other brain regions, and neural song-control circuits undergo dramatic changes during the period of vocal learning due to both loss of neurons as well as incorporation of newly generated neurons. In contrast, canaries do learn new song patterns in adulthood and modify their vocal repertoires each breeding season. Adult canaries also maintain a large population of dividing cells in the ependymal zone of the telencephalon, and vast numbers of newly generated neurons migrate out to become incorporated into functional circuits and replace older neurons. We review the relationships between cellular and behavioral aspects of song learning in both zebra finches and canaries, as well as the role of gonadal hormones in regulating diverse aspects of the song-control system.  相似文献   

11.
Auditory feedback is necessary for adult song maintenance in both oscines and psittacines. Although belonging to phylogenically separated orders, deafened adult oscine Bengalese finches and psittacine budgerigars exhibit similarities in certain aspects of song changes. An interesting question is whether these birds share common mechanisms for song maintenance. Therefore, it is important to compare the effects of deafening on adult song patterns among and within orders. Although zebra and Bengalese finches are closely related oscine species, few studies have performed direct, long-term, quantitative comparisons of their songs after deafening because suitable song characteristics have not been identified. Based on our previous findings for Bengalese finch songs, we analyzed zebra finch songs over 9 months after deafening, focusing on changes in the number of syllables categorized according to fundamental frequencies. Deafened zebra finches demonstrated a gradual but significant decrease in high-frequency syllables and a tendency to increase low-frequency syllables, similar to deafened Bengalese finches. Although this change took longer in zebra finches, the altered proportion of syllables eventually stabilized. Results indicated that adult songs show similar aspects after auditory deprivation, and that neural mechanisms involved in the maintenance of high-frequency song syllables, using auditory feedback, may be present in both finches despite species differences.  相似文献   

12.
Male zebra finches learn a specific vocal pattern during a restricted period of development. They produce that song in stereotyped form throughout adulthood, and are unable to learn new song patterns. Development of the neural substrate for song learning and behavior is delayed relative to other brain regions, and neural song-control circuits undergo dramatic changes during the period of vocal learning due to both loss of neurons as well as incorporation of newly generated neurons. In contrast, canaries do learn new song patterns in adulthood and modify their vocal repertoires each breeding season. Adult canaries also maintain a large population of dividing cells in the ependymal zone of the telencephalon, and vast numbers of newly generated neurons migrate out to become incorporated into functional circuits and replace older neurons. We review the relationships between cellular and behavioral aspects of song learning in both zebra finches and canaries, as well as the role of gonadal hormones in regulating diverse aspects of the song-control system. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
Based on statistical analyses of song sequences, Bengalese finch (Lonchura striata var. domestica) songs do not show unvarying motif repetition as has been found in zebra finches (Taeniopygia guttata). Instead, there are variations of partially stereotyped sequences of song syllables. Although these stereotyped sequences consist of multiple syllables, in most cases these syllables occur together. To examine whether such structures really exist as a vocal production unit, we subjected singing birds to a light flash and determined when the stimulus stopped the songs. When light interruptions were presented within the statistically stereotyped sequences, the subsequent syllables tended to be produced, whereas interruptions presented during the statistically variable sequences tended to cause instantaneous song termination. This suggests that the associations among the song syllables that compose the statistically stereotyped sequences are more order dependent than those for the statistically variable sequences, and the tolerances of syllable pairs to visual interruptions are consistent with the statistical song structures. Additionally, following interruptions, several types of song sequence variations were observed that had not been previously reported. These phenomena might be caused by various effects of the visual stimulus on the hierarchical motor control program.  相似文献   

14.
The apparently continuous flow of bird song is in reality punctuated by brief periods of silence during which there are short inspirations called minibreaths. To determine whether these minibreaths are accompanied, and thus perhaps caused, by activity in inspiratory muscles, electromyographic (EMG) activity was recorded in M. scalenus in zebra finches and in M. scalenus and Mm. levatores costarum in cowbirds, together with EMGs from the abdominal expiratory muscles, air sac pressure and tracheal airflow. EMG activity in Mm. scalenus and levatores costarum consistently preceded the onset of negative air sac pressure by ∼11 ms during both quiet respiration and singing in both species. The electrical activity of these two muscles was very similar. Compared with during quiet respiration, the amplitude of inspiratory muscle EMG during singing was increased between five- and 12-fold and its duration was decreased from >200 ms to on average 41 ms during minibreaths, again for both species, but inspiratory muscle activity did not overlap with that of the expiratory muscles. Thus, there was no indication that the inspiratory muscles acted either to shorten the duration of expiration or to reduce the expiratory effort as might occur if both expiratory and inspiratory muscles were simultaneously active. Inspiratory and expiratory muscle activities were highly stereotyped during song to the extent that together, they defined the temporal pattern of the songs and song types of individual birds. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 441–453, 1998  相似文献   

15.
The neuromuscular control of birdsong.   总被引:10,自引:0,他引:10  
Birdsong requires complex learned motor skills involving the coordination of respiratory, vocal organ and craniomandibular muscle groups. Recent studies have added to our understanding of how these vocal subsystems function and interact during song production. The respiratory rhythm determines the temporal pattern of song. Sound is produced during expiration and each syllable is typically followed by a small inspiration, except at the highest syllable repetition rates when a pattern of pulsatile expiration is used. Both expiration and inspiration are active processes. The oscine vocal organ, the syrinx, contains two separate sound sources at the cranial end of each bronchus, each with independent motor control. Dorsal syringeal muscles regulate the timing of phonation by adducting the sound-generating labia into the air stream. Ventral syringeal muscles have an important role in determining the fundamental frequency of the sound. Different species use the two sides of their vocal organ in different ways to achieve the particular acoustic properties of their song. Reversible paralysis of the vocal organ during song learning in young birds reveals that motor practice is particularly important in late plastic song around the time of song crystallization in order for normal adult song to develop. Even in adult crystallized song, expiratory muscles use sensory feedback to make compensatory adjustments to perturbations of respiratory pressure. The stereotyped beak movements that accompany song appear to have a role in suppressing harmonics, particularly at low frequencies.  相似文献   

16.
Vocal production in songbirds requires the control of the respiratory system, the syrinx as sound source and the vocal tract as acoustic filter. Vocal tract movements consist of beak, tongue and hyoid movements, which change the volume of the oropharyngeal–esophageal cavity (OEC), glottal movements and tracheal length changes. The respective contributions of each movement to filter properties are not completely understood, but the effects of this filtering are thought to be very important for acoustic communication in birds. One of the most striking movements of the upper vocal tract during vocal behavior in songbirds involves the OEC. This study measured the acoustic effect of OEC adjustments in zebra finches by comparing resonance acoustics between an utterance with OEC expansion (calls) and a similar utterance without OEC expansion (respiratory sounds induced by a bilateral syringeal denervation). X-ray cineradiography confirmed the presence of an OEC motor pattern during song and call production, and a custom-built Hall-effect collar system confirmed that OEC expansion movements were not present during respiratory sounds. The spectral emphasis during zebra finch call production ranging between 2.5 and 5 kHz was not present during respiratory sounds, indicating strongly that it can be attributed to the OEC expansion.  相似文献   

17.
The acoustic profile of the zebra finch song is characterized by a series of identical repeating units, each comprising a distinctive sequence of acoustic elements, called syllables. Here, we perform an analysis of song pattern deviations caused by variabilities in the production of song syllables. Zebra finches produce four different kinds of syllable variabilities-syllable deletions, single or double syllable insertions, syllable alterations, and syllable repetitions. All these variabilities, with the exception of repetitions, are present in songs of more than two-thirds of the normal adult birds; repetitions are present in less than one-fifth of birds. The frequency of occurrence of these variabilities is independent of the amount of singing, suggesting that they are unlikely to result simply from singing-induced physiological changes such as fatigue. Their frequencies in tutor-deprived birds are not significantly different from those in normal birds, indicating that they are unlikely to be acquired due to deficiencies in tutor-dependent learning. The types, patterns of occurrence and relative frequencies of these song syllable variabilities might reveal insights into the functioning of the song motor control pathway.  相似文献   

18.
Female songbirds use male songs as an important criterion for mate selection. Properties of male songs are thought to indicate the male's quality as a potential mate. Song preferences in female zebra finches are known to be influenced by two factors--early auditory experience and the acoustic characteristics of males' songs. Studies often investigate song preferences by priming females with estrogen. However, estrogenic influences on song preferences have not been studied. We investigated the relative influence of early auditory experience, acoustic features of songs, and estrogen availability on song responsiveness in female zebra finches. Juvenile female zebra finches were tutored for 10 days with 40 songs per day with one of three acoustically different song types--simple songs, long-bout songs or complex songs. A fourth group of females was untutored. Aside from this brief song exposure, females were raised and maintained without exposure to male songs. During adulthood, females' behavioral responses to the three song types were tested under three hormone conditions--untreated, estradiol-treated and 1,4,6-androstatriene-3,17-dione (ATD)-treated (to lower endogenous estrogen). Based on the results of our study, four conclusions can be drawn. First, song responsiveness in female zebra finches is strongly affected by minimal early acoustic experience. Second, inexperienced female zebra finches are inherently biased to respond more to complex songs over other song types Third, although female zebra finches are inherently biased to respond more to complex songs, early acoustic experience may either reinforce or weaken this inherent responsiveness to complex songs. Fourth, estrogen selectively accentuates song responsiveness in acoustically-experienced female zebra finches.  相似文献   

19.
Female choice plays a critical role in the evolution of male acoustic displays. Yet there is limited information on the neurophysiological basis of female songbirds’ auditory recognition systems. To understand the neural mechanisms of how non-singing female songbirds perceive behaviorally relevant vocalizations, we recorded responses of single neurons to acoustic stimuli in two auditory forebrain regions, the caudal lateral mesopallium (CLM) and Field L, in anesthetized adult female zebra finches (Taeniopygia guttata). Using various metrics of response selectivity, we found consistently higher response strengths for unfamiliar conspecific songs compared to tone pips and white noise in Field L but not in CLM. We also found that neurons in the left auditory forebrain had lower response strengths to synthetics sounds, leading to overall higher neural selectivity for song in neurons of the left hemisphere. This laterality effect is consistent with previously published behavioral data in zebra finches. Overall, our results from Field L are in parallel and from CLM are in contrast with the patterns of response selectivity reported for conspecific songs over synthetic sounds in male zebra finches, suggesting some degree of sexual dimorphism of auditory perception mechanisms in songbirds.  相似文献   

20.
Bird song is a complex communication behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract, but the specific nature and dynamics of this modification are not well understood. To determine the contribution of beak movements to sound modification, we studied the beak gape patterns in zebra finches (Taeniopygia guttata). Subsyringeal air sac pressure and song were recorded together with changes in beak gape, which were monitored with a magneto-sensitive transducer. Beak gape was positively correlated with fundamental frequency, peak frequency, and subsyringeal air sac pressure in all but one bird. For harmonic stacks, peak frequency increased with increasing beak gape, and the relationship between fundamental frequency and beak gape was no longer significant. Experimentally holding the beak open or closed had acoustic consequences consistent with the model in which beak movements change upper vocal tract length and, thus, the filter properties. Beak gape was positively correlated with sound amplitude in all but two birds. The relationship between beak aperture and amplitude may, however, be indirect because air sac pressure is correlated with amplitude and beak gape. The beak is opened quickly and to its widest aperture immediately prior to the onset of sound and at rapid transitions in sound, suggesting that beak movements may affect vibratory behavior of the labia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号