首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potential of an attenuated Salmonella enterica serovar Typhimurium strain as a prophylactic anti-tumor vaccine against the murine fibrosarcoma WEHI 164 was evaluated. Tumor cells were transfected with the DNA sequence encoding the MHC class I-restricted peptide p60(217-225) from Listeria monocytogenes. BALB/c mice received a single orogastric immunization with Salmonella that translocates a chimeric p60 protein via its type III secretion system. Mice were subsequently challenged subcutaneously with p60(217-225)-expressing WEHI cells. In vivo protection studies revealed that 80% of these mice remained free of the fibrosarcoma after challenge, whereas all animals of the non-vaccinated control group did develop tumor growth. In further experiments, the distribution of tetramer-positive p60(217-225)-specific effector and memory CD8 T cells after Salmonella-based immunization and tumor application was analyzed. Costaining with CD62L and CD127 revealed a predominance of p60-specific central memory and effector memory CD8 T cells in spleens, whereas in blood samples the majority of p60-specific lymphocytes belonged to effector and effector memory CD8 T cell subsets. This is the first report demonstrating that a bacterial type III secretion system can be used for heterologous antigen delivery to induce cytotoxic effector and memory CD8 T cell responses resulting in an efficient prevention of tumor growth.  相似文献   

2.
High sequence variability in the envelope gene of human immunodeficiency virus has provoked interest in nonenvelope antigens as potential immunogens against retrovirus infection. However, the role of core protein antigens encoded by the gag gene in protective immunity against retroviruses is unclear. By using recombinant vaccinia viruses expressing the Friend murine leukemia helper virus (F-MuLV) gag gene, we could prime CD4+ T-helper cells and protectively immunize susceptible strains of mice against Friend retrovirus infection. Recovery from leukemic splenomegaly developed more slowly after immunization with vaccinia virus-F-MuLV gag than with vaccinia virus-F-MuLV env; however, genetic nonresponders to the envelope protein could be partially protected with Gag vaccines. Class switching of F-MuLV-neutralizing antibodies from immunoglobulin M to immunoglobulin G after challenge with Friend virus complex was facilitated in mice immunized with the Gag antigen. Sequential deletion of the gag gene revealed that the major protective epitope was located on the N-terminal hydrophobic protein p15.  相似文献   

3.
Before determining the quantity of mouse intestinal secretory IgA after oral vaccination, we have tried to find the best conditions of immunization with an avirulent S. typhimurium strain given by oral route. The results show the superiority of the live vaccin with respect to the heat-killed one.  相似文献   

4.
Protective immunity against Listeria monocytogenes strongly depends on CD8+ T lymphocytes, and both IFN-gamma secretion and target cell killing are considered relevant to protection. We analyzed whether we could induce a protective type 1 immune response by DNA vaccination with the gene gun using plasmids encoding for two immunodominant listerial Ags, listeriolysin and p60. To induce a Th1 response, we 1) coprecipitated a plasmid encoding for GM-CSF, 2) employed a prime/boost vaccination schedule with a 45-day interval, and 3) coinjected oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs. DNA immunization of BALB/c mice with plasmids encoding for listeriolysin (pChly) and p60 (pCiap) efficiently induced MHC class I-restricted, Ag-specific CD8+ T cells that produced IFN-gamma. Coinjection of CpG-ODN significantly increased the frequency of specific IFN-gamma-secreting T cells. Although pChly induced specific CD8+ T cells expressing CTL activity, it failed to stimulate CD4+ T cells. Only pCiap induced significant CD4+ T cell and humoral responses, which were predominantly of Th2 type. Vaccination with either plasmid induced protective immunity against listerial challenge, and coinjection of CpG ODN improved vaccine efficacy in some situations. This study demonstrates the feasibility of gene gun administration of plasmid DNA for inducing immunity against an intracellular pathogen for which protection primarily depends on type 1 CD8+ T cells.  相似文献   

5.
Two ALVAC (canarypox virus)-based recombinant viruses expressing the feline leukemia virus (FeLV) subgroup A env and gag genes were assessed for their protective efficacy in cats. Both recombinant viruses contained the entire gag gene. ALVAC-FL also expressed the entire envelope glycoprotein, while ALVAC-FL(dl IS) expressed an env-specific gene product deleted of the putative immunosuppressive region. Although only 50% of the cats vaccinated with ALVAC-FL(dl IS) were protected against persistent viremia after oronasal exposure to a homologous FeLV isolate, all cats administered ALVAC-FL resisted the challenge exposure. Significantly, protection was afforded in the absence of detectable FeLV-neutralizing antibodies. These results represent the first effective vaccination of cats against FeLV with a poxvirus-based recombinant vector and have implications that are relevant not only to FeLV vaccine development but also to developing vaccines against other retroviruses, including human immunodeficiency virus.  相似文献   

6.
Cell cultures expressing a retroviral envelope are relatively resistant to superinfection by retroviruses which bear envelopes using the same receptor. We tested whether this phenomenon, known as interference to superinfection, might confer protection against retroviral diseases. Newborn mice first inoculated with the attenuated strain B3 of Friend murine leukemia virus (F-MuLV) were protected against severe early hemolytic anemia and nonacute anemiant erythroleukemia induced by the virulent strain 57 of F-MuLV. Vaccinated animals were also protected as adults against acute polycythemic erythroleukemia induced upon inoculation with the viral complex containing the defective spleen focus-forming virus and F-MuLV 57 as helper virus. Animals were inoculated as newborns, which is known to induce immune tolerance in mice, and the rapid kinetics of protection, incompatible with the delay necessary for the immune response to develop, indicated that protection was not due to an immune mechanism but rather was due to the rapid and long-lasting phenomenon of interference. This result was confirmed by combining parental and envelope chimeric MuLV from different interference groups as vaccinal and challenge viruses. Although efficient protection could be provided by vaccination by interference, we observed that attenuated replication-competent retroviruses from heterologous interference groups might exert deleterious synergistic effects.  相似文献   

7.
White spot syndrome virus (WSSV) occurs worldwide and causes high mortality and considerable economic damage to the shrimp farming industry. No adequate treatments against this virus are available. It is generally accepted that invertebrates such as shrimp do not have an adaptive immune response system such as that present in vertebrates. As it has been demonstrated that shrimp surviving a WSSV infection have higher survival rates upon subsequent rechallenge, we investigated the potential of oral vaccination of shrimp with subunit vaccines consisting of WSSV virion envelope proteins. Penaeus monodon shrimp were fed food pellets coated with inactivated bacteria overexpressing two WSSV envelope proteins, VP19 and VP28. Vaccination with VP28 showed a significant lower cumulative mortality compared to vaccination with bacteria expressing the empty vectors after challenge via immersion (relative survival, 61%), while vaccination with VP19 provided no protection. To determine the onset and duration of protection, challenges were subsequently performed 3, 7, and 21 days after vaccination. A significantly higher survival was observed both 3 and 7 days postvaccination (relative survival, 64% and 77%, respectively), but the protection was reduced 21 days after the vaccination (relative survival, 29%). This suggests that contrary to current assumptions that invertebrates do not have a true adaptive immune system, a specific immune response and protection can be induced in P. monodon. These experiments open up new ways to benefit the WSSV-hampered shrimp farming industry.  相似文献   

8.
Secretion of hybrid proteins by the Yersinia Yop export system.   总被引:52,自引:21,他引:31       下载免费PDF全文
After incubation at 37 degrees C in the absence of Ca2+ ions, pathogenic strains of Yersinia spp. release large amounts of a set of plasmid-encoded proteins called Yops. The secretion of these proteins, involved in pathogenicity, occurs via a mechanism that involves neither the removal of a signal sequence nor the recognition of a C-terminal domain. Analysis of deletion mutants allowed the secretion recognition domain to be localized within the 48 N-terminal amino acids of protein YopH, within the 98 N-terminal residues of protein YopE, and within the 76 N-terminal residues of YopQ. Comparison of these regions failed to reveal any sequence similarity, suggesting that the secretion signal of Yop proteins is conformational rather than sequential. Hybrid proteins containing the amino-terminal part of YopH fused to either the alpha-peptide of beta-galactosidase or to alkaline phosphatase deprived of its signal sequence were efficiently secreted to the Yersinia culture medium. This observation opens new prospects in using Yersinia spp. as chimeric-protein producers and as potential live carriers for foreign antigens.  相似文献   

9.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

10.
Adeno-associated viruses (AAV) have been developed and evaluated as recombinant vectors for gene therapy in many preclinical studies, as well as in clinical trials. However, only a few approaches have used recombinant AAV (rAAV) to deliver vaccine antigens. We generated an rAAV encoding the major capsid protein L1 (L1h) from the human papillomavirus type 16 (HPV16), aiming to develop a prophylactic vaccine against HPV16 infections, which are the major cause of cervical cancer in women worldwide. A single dose of rAAV5 L1h administered intranasally was sufficient to induce high titers of L1-specific serum antibodies, as well as mucosal antibodies in vaginal washes. Seroconversion was maintained for at least 1 year. In addition, a cellular immune response was still detectable 60 weeks after immunization. Furthermore, lyophilized rAAV5 L1h successfully evoked a systemic and mucosal immune response in mice. These data clearly show the efficacy of a single-dose intranasal immunization against HPV16 based on the recombinant rAAV5L1h vector without the need of an adjuvant.  相似文献   

11.
A recombinant (r-) Salmonella typhimurium aroA vaccine that secretes the naturally secreted protein of Mycobacterium bovis strain BCG, Ag85B, by means of the HlyB/HlyD/TolC export machinery (termed p30 in the following) was constructed. In contrast to r-S. typhimurium control, oral vaccination of mice with the r-S. typhimurium p30 construct induced partial protection against an intravenous challenge with the intracellular pathogen Mycobacterium tuberculosis, resulting in similar vaccine efficacy comparable to that of the systemically administered attenuated M. bovis BCG strain. The immune response induced by r-S. typhimurium p30 was accompanied by augmented interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) levels produced by restimulated splenocytes. These data suggest that the HlyB/HlyD/TolC-based antigen delivery system with attenuated r-S. typhimurium as carrier is capable of inducing an immune response against mycobacterial antigens.  相似文献   

12.
Fowlpox virus (FPV) recombinants expressing the glycoprotein B and the phosphorylated protein (pp38) of the GA strain of Marek's disease virus (MDV) were assayed for their ability to protect chickens against challenge with virulent MDV. The recombinant FPV expressing the glycoprotein B gene elicited neutralizing antibodies against MDV, significantly reduced the level of cell-associated viremia, and, similar to the conventional herpesvirus of turkeys, protected chickens against challenge with the GA strain and the highly virulent RB1B and Md5 strains of MDV. The recombinant FPV expressing the pp38 gene failed to either elicit neutralizing antibodies against MDV or protect the vaccinated chickens against challenge with MDV.  相似文献   

13.
The gut provides a large area for immunization enabling the development of mucosal and systemic Ab responses. To test whether the protective Ags to Yersinia pestis can be orally delivered, the Y. pestis caf1 operon, encoding the F1-Ag and virulence Ag (V-Ag) were cloned into attenuated Salmonella vaccine vectors. F1-Ag expression was controlled under a promoter from the caf1 operon; two different promoters (P), PtetA in pV3, PphoP in pV4, as well as a chimera of the two in pV55 were tested. F1-Ag was amply expressed; the chimera in the pV55 showed the best V-Ag expression. Oral immunization with Salmonella-F1 elicited elevated secretory (S)-IgA and serum IgG titers, and Salmonella-V-Ag(pV55) elicited much greater S-IgA and serum IgG Ab titers than Salmonella-V-Ag(pV3) or Salmonella-V-Ag(pV4). Hence, a new Salmonella vaccine, Salmonella-(F1+V)Ags, made with a single plasmid containing the caf1 operon and the chimeric promoter for V-Ag allowed the simultaneous expression of F1 capsule and V-Ag. Salmonella-(F1+V)Ags elicited elevated Ab titers similar to their monotypic derivatives. For bubonic plague, mice dosed with Salmonella-(F1+V)Ags and Salmonella-F1-Ag showed similar efficacy (>83% survival) against approximately 1000 LD(50) Y. pestis. For pneumonic plague, immunized mice required immunity to both F1- and V-Ags because the mice vaccinated with Salmonella-(F1+V)Ags protected against 100 LD(50) Y. pestis. These results show that a single Salmonella vaccine can deliver both F1- and V-Ags to effect both systemic and mucosal immune protection against Y. pestis.  相似文献   

14.
Fish nodaviruses (betanodaviruses) are small, non-enveloped icosahedral single-stranded positive-sense RNA viruses that can cause viral encephalopathy and retinopathy (VER) in a number of cultured marine teleost species, including Atlantic halibut (Hippoglossus hippoglossus). A recombinant protein vaccine and a DNA vaccine were produced, based on the same capsid-encoding region of the Atlantic halibut nodavirus (AHNV) genome, and tested for protection in juvenile turbot (Scophthalmus maximus). Vaccine efficacy was demonstrated in the fish vaccinated with recombinant capsid protein but not in the DNA-vaccinated fish, despite the fact that in vivo expression of the DNA vaccine-encoded antigen was confirmed by RNA in situ hybridisation and immunohistochemistry. Combined DNA and recombinant vaccine administration did not improve the effect of the latter. Surprisingly, fish vaccinated with 50 microg recombinant protein demonstrated a threefold lower survival rate than the two groups that received 10 microg recombinant protein. Neither the recombinant protein vaccine nor the DNA vaccine induced anti-viral antibodies 9 weeks after immunisation, while antibodies reactive with the recombinant protein were detectable mainly in fish vaccinated with 50 microg recombinant protein. The study also demonstrates evidence of viral replication inside the myocytes of intramuscularly challenged fish.  相似文献   

15.
The Salmonella type III secretion system (T3SS) efficiently translocates heterologous proteins into the cytosol of eukaryotic cells. This leads to an antigen-specific CD8 T-cell induction in mice orally immunized with recombinant Salmonella. Recently, we have used Salmonella's T3SS as a prophylactic and therapeutic intervention against a murine fibrosarcoma. In this study, we constructed a recombinant Salmonella strain translocating the immunogenic H-2D(b)-specific CD8 T-cell epitope VILTNPISM (KDR2) from the murine vascular endothelial growth factor receptor 2 (VEGFR2). VEGFR2 is a member of the tyrosine protein kinase family and is upregulated on proliferating endothelial cells of the tumor vasculature. After single orogastric vaccination, we detected significant numbers of KDR2-tetramer-positive CD8 T cells in the spleens of immunized mice. The efficacy of these cytotoxic T cells was evaluated in a prophylactic setting to protect mice from challenges with B16F10 melanoma cells in a flank tumor model, and to reduce dissemination of spontaneous pulmonary melanoma metastases. Vaccinated mice revealed a reduction of angiogenesis by 62% in the solid tumor and consequently a significant decrease of tumor growth as compared to non-immunized mice. Moreover, in the lung metastasis model, immunization with recombinant Salmonella resulted in a reduction of the metastatic melanoma burden by approximately 60%.  相似文献   

16.
Baculovirus-based vectors are efficient means for gene transfer into hepatocytes in vitro. However, gene transfer in vivo is hampered by inactivation of baculovirus by the complement system. In this study, we demonstrate protection of baculovirus vectors against complement-mediated inactivation through recombinant soluble complement receptor type 1 (sCR1). Blocking of only the alternative complement pathway by a mutant of sCR1 did not result in baculovirus survival in human serum. The data suggest the use of sCR1 as a potent drug to facilitate baculovirus-mediated gene transfer into hepatocytes in vivo.  相似文献   

17.
Recent events have raised concern over the use of pathogens, including variola virus, as biological weapons. Vaccination with Dryvax is associated with serious side effects and is contraindicated for many people, and the development of a safer effective smallpox vaccine is necessary. We evaluated an attenuated vaccinia virus, modified vaccinia virus Ankara (MVA), by use of a murine model to determine its efficacy against an intradermal (i.d.) or intranasal (i.n.) challenge with vaccinia virus (vSC8) or a recombinant vaccinia virus expressing murine interleukin-4 that exhibits enhanced virulence (vSC8-mIL4). After an i.d. challenge, 15 of 16 mice who were inoculated with phosphate-buffered saline developed lesions, one dose of intramuscularly administered MVA was partially protective (3 of 16 mice developed lesions), and the administration of two or three doses of MVA was completely protective (0 of 16 mice developed lesions). In unimmunized mice, an i.n. challenge with vSC8 caused a significant but self-limited illness, while vSC8-mIL4 resulted in lethal infections. Immunization with one or two doses of MVA prevented illness and reduced virus titers in mice who were challenged with either vSC8 or vSC8-mIL4. MVA induced a dose-related neutralizing antibody and vaccinia virus-specific CD8+-T-cell response. Mice immunized with MVA were fully protected from a low-dose vSC8-mIL4 challenge despite a depletion of CD4+ cells, CD8+ cells, or both T-cell subsets or an antibody deficiency. CD4+- or CD8+-T-cell depletion reduced the protection against a high-dose vSC8-mIL4 challenge, and the depletion of both T-cell subsets was associated with severe illness and higher vaccinia virus titers. Thus, MVA induces broad humoral and cellular immune responses that can independently protect against a molecularly modified lethal poxvirus challenge in mice. These data support the continued development of MVA as an alternative candidate vaccine for smallpox.  相似文献   

18.
19.
20.
Avian coccidiosis is an intestinal disease caused by protozoa of the genus Eimeria. To investigate the potential of recombinant protein vaccines to control coccidiosis, we cloned 2 Eimeria sp. genes (EtMIC2 and 3-1E), expressed and purified their encoded proteins, and determined the efficacy of in ovo immunization to protect against Eimeria infections. Immunogen-specific serum antibody titers, parasite fecal shedding, and body weight gains were measured as parameters of disease. When administered alone, the recombinant EtMIC2 gene product induced significantly higher antibody responses, lower oocyst fecal shedding, and increased weight gains compared with nonvaccinated controls following infection with E. tenella. Combined embryo immunization with the EtMIC2 protein plus chicken cytokine or chemokine genes demonstrated that all 3 parameters of vaccination were improved compared with those of EtMIC2 alone. In particular, covaccination with EtMIC2 plus interleukin (IL)-8, IL-16, transforming growth factor-beta4, or lymphotactin significantly decreased oocyst shedding and improved weight gains beyond those achieved by EtMIC2 alone. Finally, individual vaccination with either EtMIC2 or 3-1E stimulated protection against infection by the heterologous parasite E. acervulina. Taken together, these results indicate that in ovo vaccination with the EtMIC2 protein plus cytokine/chemokine genes may be an effective method to control coccidiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号