首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic bacterium Rhodopseudomonas capsulata can grow under anaerobic conditions with light as the energy source or, alternatively, in darkness with D-fructose or certain other sugars as the sole source of carbon and energy. Growth in the latter mode requires an "accessory oxidant" such as trimethylamine-N-oxide, and the resulting cells contain the photosynthetic pigments characteristic of R. capsulata (associated with intracytoplasmic membranes) and substantial deposits of poly-beta-hydroxybutyrate. In dark anaerobic batch cultures in fructose plus trimethylamine-N-oxide medium, trimethylamine formation parallels growth, and typical fermentation products accumulate, namely, CO2 and formic, acetic, and lactic acids. These products are also found in dark anaerobic continuous cultures of R. capsulata; acetic acid and CO2 predominate when fructose is limiting, whereas formic and lactic acids are observed at elevated concentrations when trimethylamine-N-oxide is the limiting nutrient. Evidence is presented to support the conclusions that ATP generation during anaerobic dark growth of R. capsulata on fructose plus trimethylamine-N-oxide occurs by substrate level phosphorylations associated with classical glycolysis and pyruvate dissimilation, and that the required accessory oxidant functions as an electron sink to permit the management of fermentative redox balance, rather than as a terminal electron acceptor necessary for electron transport-driven phosphorylation.  相似文献   

2.
After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was coupled to generation of a membrane potential and inhibited by rotenone but not antimycin. It is suggested that electron flow to nitrous oxide reductase branches at the level of ubiquinone from the previously characterized electron transfer components of R. capsulata. This pathway of electron transport could include cytochrome c', a component hitherto without a recognized function. R. capsulata grew under dark anaerobic conditions in the presence of malate as carbon source and nitrous oxide as electron acceptor. This confirms that nitrous oxide respiration is linked to ATP synthesis. Phototrophically and anaerobically grown cultures of nondenitrifying strains of Rhodopseudomonas sphaeroides, Rhodopseudomonas palustris, and Rhodospirillum rubrum also possessed nitrous oxide reductase activity.  相似文献   

3.
Hydrogen evolution and consumption by cell and chromatophore suspensions of the photosynthetic bacterium Rhodopseudomonas capsulata was measured with a sensitive and specific mass spectrometric technique which directly monitors dissolved gases. H2 production by nitrogenase was inhibited by acetylene and restored by carbon monoxide. An H2 evolution activity coupled with HD formation and D2 uptake (H-D exchange) was unaffected by C2H2 and CO. Cultures lacking nitrogenase activity also exhibited H-D exchange activity, which was catalyzed by a membrane-bound hydrogenase present in the chromatophores of R. capsulata. A net hydrogen uptake, mediated by hydrogenase, was observed when electron acceptors such as CO2, O2, or ferricyanide were present in the medium.  相似文献   

4.
Purple photosynthetic bacteria produce H2 from organic compounds by an anaerobic light-dependent electron transfer process in which nitrogenase functions as the terminal catalyst. It has been established that the H2-evolving function of nitrogenase is inhibited by N2 and ammonium salts, and is maximally expressed in cells growing photoheterotrophically with certain amino acids as sources of nitrogen. In the present studies with Rhodopseudomonas capsulata, nutritional factors affecting the rate and magnitude of H2 photoproduction in cultures growing with amino acid nitrogen sources were examined. The highest H2 yields and rates of formation were observed with the organic acids: lactate, pyruvate, malate, and succinate in media containing glutamate as the N source; under optimal conditions with excess lactate, H2 was produced at rates of ca. 130 ml/h per g(dry weight) of cells. Hydrogen production is significantly influenced by the N/C ratio in the growth substrates; when this ratio exceeds a critical value, free ammonia appears in the medium and H2 is not evolved. In the "standard" lactate + glutamate system, both H2 production and growth are "saturated" at a light intesity of ca. 600 ft-c (6,500 lux). Evolution of H2, however, occurs during growth at lithe intensities as low as 50 to 100 ft-c (540 to 1,080 lux), i.e., under conditions of energy limitation. In circumstances in which energy conversion rate and supplies of reducing power exceed the capacity of the biosynthetic machinery, energy-dependent H2 production presumably represents a regulatory device that facilitates "energy-idling." It appears that even when light intensity (energy) is limiting, a significant fraction of the available reducing power and adenosine 5'-triphosphate is diverted to nitrogenase, resulting in H2 formation and a bioenergetic burden to the cell.  相似文献   

5.
The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has been known as an aerobe that respires on iron and sulfur. Here we show that the bacterium could chemolithoautotrophically grow not only on H(2)/O(2) under aerobic conditions but also on H(2)/Fe(3+), H(2)/S(0), or S(0)/Fe(3+) under anaerobic conditions. Anaerobic respiration using Fe(3+) or S(0) as an electron acceptor and H(2) or S(0) as an electron donor serves as a primary energy source of the bacterium. Anaerobic respiration based on reduction of Fe(3+) induced the bacterium to synthesize significant amounts of a c-type cytochrome that was purified as an acid-stable and soluble 28-kDa monomer. The purified cytochrome in the oxidized form was reduced in the presence of the crude extract, and the reduced cytochrome was reoxidized by Fe(3+). Respiration based on reduction of Fe(3+) coupled to oxidation of a c-type cytochrome may be involved in the primary mechanism of energy production in the bacterium on anaerobic iron respiration.  相似文献   

6.
Photoproduction of h(2) from cellulose by an anaerobic bacterial coculture   总被引:2,自引:0,他引:2  
Cellulomonas sp. strain ATCC 21399 is a facultatively anaerobic, cellulose-degrading microorganism that does not evolve hydrogen but produces organic acids during cellulose fermentation. Rhodopseudomonas capsulata cannot utilize cellulose, but grows photoheterotrophically under anaerobic conditions on organic acids or sugars. This report describes an anaerobic coculture of the Cellulomonas strain with wild-type R. capsulata or a mutant strain lacking uptake hydrogenase, which photoevolves molecular hydrogen by the nitrogenase system of R. capsulata with cellulose as the sole carbon source. In coculture, the hydrogenase-negative mutant produced 4.6 to 6.2 mol of H(2) per mol of glucose equivalent, compared with 1.2 to 4.3 mol for the wild type.  相似文献   

7.
The photosynthetic bacterium, Rhodopseudomonas capsulata, could be cultured anaerobically in the absence of light on a synthetic medium with glucose as the carbon source only when dimethyl sulfoxide (DMSO) was added. The extent of growth was proportional to both DMSO and glucose concentrations. Optimal growth was achieved with 20 mm DMSO and 0.25% glucose. Under the best conditions, cells divided with a doubling time of 12 h. Pyruvate also supported the anaerobic dark growth of R. capsulata when DMSO was present. R. capsulata, R. sphaeroides, and R. palustris strains were all able to grow under anaerobic dark conditions with DMSO. Experiments using [14C]DMSO showed that more than 95% of the 14C was converted by cultures of R. capsulata to a volatile compound, identified as dimethyl sulfide (DMS) by gas chromatography, thus demonstrating that DMSO was being reduced to DMS during growth. These results indicate that R. capsulata requires a terminal electron acceptor for anaerobic dark growth and that DMSO can serve that function.  相似文献   

8.
We have used pulsed field gel electrophoresis and megabase DNA techniques to investigate the basic genomic organization of Ralstonia eutropha H16, and to construct a physical map of its indigenous megaplasmid pHG1. This Gram-negative, soil-dwelling bacterium is a facultative chemolithoautotroph and a denitrifier. In the absence of organic substrates it can grow on H2 as its sole energy source and CO2 as its sole source of carbon. Under anaerobic conditions it can utilize nitrate as a terminal electron acceptor, whereby dinitrogen is released. Essential genetic determinants of the enzyme systems responsible for these metabolic processes are linked to the 0.44-Mb conjugative megaplasmid pHG1. Aside from pHG1, the genome of R. eutropha H16 is comprised of two circular chromosomes measuring 4.1 and 2.9 Mb, adding up to a total genome size of 7.1 Mb. An estimated five copies of rDNA are distributed on the two chromosomes. A macrorestriction map of pHG1 was derived for the endonucleases DraI and XbaI. Hybridization studies showed that genes for anaerobic metabolism are located on all three genomic replicons.  相似文献   

9.
In contrast to wild-type cells, glutamine auxotrophs of the photosynthetic bacterium Rhodopseudomonas capsulata synthesize nitrogenase, produce H2 (catalyzed by nitrogenase), and continue to reduce dinitrogen to ammonia in the presence of exogenous NH4+. The glutamine synthetase activity of such mutants is less than 2% of that observed in the wild type. It appears that glutamine synthetase plays a significant role in regulation of nitrogenase synthesis in R. capsulata.  相似文献   

10.
The glutamine synthetase of the phototrophic bacterium Rhodopseudomonas capsulata E1F1 was purified to homogeneity by a procedure which used a single affinity chromatography step. Like enzymes from other photosynthetic procaryotes, native glutamine synthetase from R. capsulata E1F1 was found to be a dodecameric protein of approximately 660 kilodaltons with identical subunits of about 55 kilodaltons each. The Stokes radius and S20,w of the native enzyme were 8.35 nm and 19.20, respectively. The enzyme exhibited different aggregation states with detectable oligomers of 1, 2, 3, 4, 6, 8, 10, and 12 subunits. Disaggregation of the glutamine synthetase occurred after the native protein was subjected to electrophoresis in polyacrylamide gels, as well as occurring spontaneously at low ionic strength. Glutamine synthetase from R. capsulata E1F1 was regulated by an adenylylation-deadenylylation mechanism, and the adenylylation state of the protein depended on the nitrogen source, growth phase, and light intensity. Ammonia repressed glutamine synthetase, whereas glycine, serine, alanine, valine, and aspartate were noncompetitive inhibitors of the glutamine synthetase biosynthetic activity.  相似文献   

11.
A challenge for photobiological production of hydrogen gas (H(2)) as a potential biofuel is to find suitable electron-donating feedstocks. Here, we examined the inorganic compound thiosulfate as a possible electron donor for nitrogenase-catalyzed H(2) production by the purple nonsulfur phototrophic bacterium (PNSB) Rhodopseudomonas palustris. Thiosulfate is an intermediate of microbial sulfur metabolism in nature and is also generated in industrial processes. We found that R. palustris grew photoautotrophically with thiosulfate and bicarbonate and produced H(2) when nitrogen gas was the sole nitrogen source (nitrogen-fixing conditions). In addition, illuminated nongrowing R. palustris cells converted about 80% of available electrons from thiosulfate to H(2). H(2) production with acetate and succinate as electron donors was less efficient (40 to 60%), partly because nongrowing cells excreted the intermediary metabolite α-ketoglutarate into the culture medium. The fixABCX operon (RPA4602 to RPA4605) encoding a predicted electron-transfer complex is necessary for growth using thiosulfate under nitrogen-fixing conditions and may serve as a point of engineering to control rates of H(2) production. The possibility to use thiosulfate expands the range of electron-donating compounds for H(2) production by PNSBs beyond biomass-based electron donors.  相似文献   

12.
Six yeasts were studied for their ability to reduce ethyl 4-chloroacetoacetate (ethyl 4-chloro-3-oxobutanoate) stereoselectively. Five species reduced the substrate to ethyl (S)-4-chloro-3-hydroxybutanoate of high (92–99%) optical purity. With glucose-grown cells, substrate reduction could only be demonstrated when growth was oxygen-limited, whereas xylose-grown Pichia capsulata could be grown under conditions of oxygen excess without losing its reducing ability. Zygosaccha-romyces rouxii exhibited high enantioselectivity (≥98% ee (S)-enantiomer) under all conditions tested, whilst in P. capsulata, a novel switch was observed from producing mainly the (R)-enantiomer using glucose as co-substrate to producing mainly the (R)-enantiomer using 2-propanol as co-substrate. This switch was correlated with a change in reduction predominantly from an NADPH-dependent dehydrogenase system to an NADH-dependent system. In the production of ethyl (R)-4-chloro-3-hydroxybutanoate with P. capsulata, the enantioselectivity was also found to depend upon growth conditions. With glucose-grown cells, higher enantioselectivity was observed using cells harvested in stationary phase (93–94% ee) compared with cells harvested in exponential phase (43–60% ee). Growing P. capsulata with xylose rather than glucose as the major source of carbon for growth resulted in an eight-fold increase in the specific rate of ethyl (R)-4-chloro-3-hydroxybutanoate production using 2-propanol as co-substrate, although enantioselectivity was slightly reduced (65–81% ee) compared with the maximum achieved with glucose-grown cells. The effect of growth on xylose could also be correlated with enhanced activity of an NADH-dependent (R)-selective dehydrogenase system.  相似文献   

13.
Abstract The active form of Rhodopseudomonas capsulata nitrogenase is active in vitro when dithionite or ferredoxins from this bacterium are used as electron donors. The presence of the activating nitrogenase enzyme and Mn2+ ions is needed for functioning of the inactive form of Rh. capsulata nitrogenase in vitro with the use of dithionite as an electron donor. The use of Rh. capsulata ferredoxins as electron donors in vitro makes the inactive form of nitrogenase fully active as is the case in vivo.  相似文献   

14.
AIMS: This study attempted to employ response surface methodology (RSM) to evaluate the effects of glutamate concentration and pH on H(2) production from volatile fatty acids by Rhodopseudomonas capsulata. METHODS AND RESULTS: A mixture of acetate, propionate and butyrate was used as a carbon source for the H(2) production by R. capsulata. The H(2) yield and H(2) production rate were strongly affected by the glutamate concentration, pH and their interaction. The predicted maximum H(2) yield of 0.534 was obtained when glutamate concentration and pH were 6.56 mmol l(-1) and 7.29 respectively. On the contrary, the maximum H(2) production rate of 18.72 ml l(-1) h(-1) was achieved at a glutamate concentration of 7.01 mmol l(-1) and pH 7.31. CONCLUSIONS: Taking H(2) yield and H(2) production rate together into account, a glutamate concentration of 6.56-7.01 mmol l(-1) and pH of 7.29-7.31 should be selected for H(2) production from a mixture of acetate, propionate and butyrate by R. capsulata. SIGNIFICANCE AND IMPACT OF THE STUDY: The RSM was a useful tool for maximizing H(2) production by photosynthetic bacteria (PSB).  相似文献   

15.
Six yeasts were studied for their ability to reduce ethyl 4-chloroacetoacetate (ethyl 4-chloro-3-oxobutanoate) stereoselectively. Five species reduced the substrate to ethyl (S)-4-chloro-3-hydroxybutanoate of high (92-99%) optical purity. With glucose-grown cells, substrate reduction could only be demonstrated when growth was oxygen-limited, whereas xylose-grown Pichia capsulata could be grown under conditions of oxygen excess without losing its reducing ability. Zygosaccha-romyces rouxii exhibited high enantioselectivity (≥98% ee (S)-enantiomer) under all conditions tested, whilst in P. capsulata, a novel switch was observed from producing mainly the (R)-enantiomer using glucose as co-substrate to producing mainly the (R)-enantiomer using 2-propanol as co-substrate. This switch was correlated with a change in reduction predominantly from an NADPH-dependent dehydrogenase system to an NADH-dependent system. In the production of ethyl (R)-4-chloro-3-hydroxybutanoate with P. capsulata, the enantioselectivity was also found to depend upon growth conditions. With glucose-grown cells, higher enantioselectivity was observed using cells harvested in stationary phase (93-94% ee) compared with cells harvested in exponential phase (43-60% ee). Growing P. capsulata with xylose rather than glucose as the major source of carbon for growth resulted in an eight-fold increase in the specific rate of ethyl (R)-4-chloro-3-hydroxybutanoate production using 2-propanol as co-substrate, although enantioselectivity was slightly reduced (65-81% ee) compared with the maximum achieved with glucose-grown cells. The effect of growth on xylose could also be correlated with enhanced activity of an NADH-dependent (R)-selective dehydrogenase system.  相似文献   

16.
Rhodopseudomonas palustris, a purple non-sulfur bacterium, was recently found throughout the water column in Lake Kinneret. It was demonstrated to be of a versatile nature, growing under both aerobic and anaerobic conditions at different light intensities. A comparison of C-acetate uptake byR. palustris andChlorobium phaeobacterioides, a green sulfur bacterium, showed that, under identical growth conditions, C-acetate assimilation byR. palustris was greater. Furthermore, C-acetate uptake forR. palustris was greater than C−CO2 uptake at all light intensities. Depending on the prevailing conditions, acetate can be used byR. palustris as both an electron donor and carbon source. Malate synthase was used as an indicator of activity of the glyoxylic acid cycle. It was found that enzyme activity was higher (i.e., acetate was used mainly as a carbon source) under anaerobic conditions, in the dark, or in the absence of HCO 3 . Acetate was used preferably as an electron donor under photosynthetic microaerophillic conditions.  相似文献   

17.
Functional genes coding for the structural components of the nitrogenase complex (nifH,D,K) have been cloned on an 11.8-kilobase-pair HindIII fragment of DNA from the photosynthetic bacterium Rhodopseudomonas capsulata. The genes were physically mapped by hybridization of individual cloned nif genes from Klebsiella pneumoniae and Anabaena sp. strain 7120 to Southern blots of HindIII digests of the cloned R. capsulata fragment, after introduction of HindIII sites into the latter at specified locations by insertion of Tn5. Plasmids with the 11.8-kilobase-pair HindIII fragment containing the Tn5 insertions were also used for complementation tests with chromosomal Nif- mutations and for the generation of subfragments to locate those mutations by marker rescue. The R. capsulata nifH,D,K genes comprise a single unit of expression, with the same organization and polarity as found in K. pneumoniae. However, the R. capsulata nifH,D,K fragment did not complement Nif- point mutations in the corresponding Klebsiella genes, and the Klebsiella nif genes did not function in R. capsulata.  相似文献   

18.
Rhodopseudomonas capsulata was grown under anaerobic, photosynthetic conditions in a continuous culture device. Under light limitation, at a constant dilution rate, it was shown that cell composition, including photopigment (bacteriochlorophyll and carotenoids) and ribonucleic acid content, was not affected by incident light intensity; however, steady state culture density varied directly and linearly with light intensity. On the other hand, photopigment and ribonucleic acid levels were affected by growth rate regardless of light intensity. Additional experiments indicated a high apparent Ks for growth of R. capsulata with respect to light. These results were interpreted to mean that near the maximum growth rate (D = 0.45 h-1) some internal metabolic process became the limiting factor for growth, rather than the imposed energy limitation. A mathematical expression for the relation between steady-state culture density and dilution rate was derived and was found to adequately describe the data. A strong correlation was found between continuous cultures limited either by light or by a chemical energy source.  相似文献   

19.
The dark, anaerobic fermentation of pyruvate under growth conditions was examined with the following species of phototrophic purple bacteria: Rhodospirillum rubrum strains Ha and S1, Rhodopseudomonas gelatinosa strain 2150, Rhodopseudomonas acidophila strain 7050, Rhodopseudomonas palustris strain ATCC 17001, Rhodopseudomonas capsulata strains Kb1 and 6950, Rhodopseudomonas sphaeroides strain ATCC 17023, and Chromatium vinosum strain D. Fermentation balances were established for all experiments. Under fermentative conditions cell protein and dry weight increased only slightly, if at all. The species differed considerably in their fermentative activity; R. rubrum and R. gelatinosa exhibited the highest rates (2-8 mumoles pyruvate/mg protein-h). R. acidophila and R. capsulata showed an intermediate fermentation rate (0.4--2.0 mumoles pyruvate/mg protein-h), while the other strains tested fermented at quite low rates (0.2-0.4 mumoles pyruvate/mg protein-h). The extremes of fermentation times were from 30-380 hours. Based on the products of fermentation which were formed in addition to acetate, formate, and CO2, the species can be grouped as follows: a) R. rubrum, R. gelatinosa, and R. sphaeroides additionally form propionate. b) R. gelatinosa, R. palustris, R. capsulata, R. sphaeroides, and C. vinosum additionally form lactate. R. palustris also produces butyrate. c) R. acidophila and R. capsulata additionally form much 2,3-butanediol, acetoin, and diacetyl. Small amounts of acetoin were formed by the rest of the strains. A comparison of the fermentation of pyruvate by normal and starved cells (4 days in the light without a carbon source) of R. rubrum and R. gelatinosa shows that the latter ferment more slowly and produce less acetate and formate, but more propionate or lactate. The fermentation of pyruvate by R. rubrum was also studied in cultures in which the pH fell (7.2--6.6). Compared with the fermentation at neutral pH (7.3, 7.4), the following differences were found: a slower fermentation rate, an increased production of dry weight, an increased formation of propionate, but a reduced formation of acetate and a very low production of formate.  相似文献   

20.
Strains of all 18 species of the family Rhodospirillaceae (nonsulfur photosynthetic bacteria) were studied for their comparative nitrogen-fixing abilities. All species, with the exception of Rhodocyclus purpureus, were capable of growth with N2 as the sole nitrogen source under photosynthetic (anaerobic) conditions. Most rapid growth on N2 was observed in strains of Rhodopseudomonas capsulata. Within the genus Rhodopseudomonas, the species R. capsulata, R. sphaeroides, R. viridis, R. gelatinosa, and R. blastica consistently showed the highest in vivo nitrogenase rates (with the acetylene reduction technique); nitrogenase rates in other species of Rhodopseudomonas and in most species of Rhodospirillum were notably lower. Chemotrophic (dark microaerobic) nitrogen fixation occurred in all species with the exception of one strain of Rhodospirillum fulvum; oxygen requirements for dark N2 fixation varied considerably among species and even within strains of the same species. We conclude that the capacity to fix molecular nitrogen is virtually universal among members of the Rhodospirillaceae but that the efficacy of the process varies considerably among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号