首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic male sterility (CMS) in plants often results in gynodioecious populations, composed of hermaphrodites and male-sterile females. All models of gynodioecy assume maternal inheritance of the cytoplasmic alleles and postulate a variety of negatively frequency-dependent mechanisms to maintain the cytoplasmic polymorphisms observed in many natural populations. However, in some plant species, mitochondria are transmitted at least occasionally by pollen, a process called paternal leakage. We show that even a small amount of paternal leakage is sufficient to sustain a permanent, stable cytoplasmic polymorphism. Because only hermaphrodites provide pollen in gynodioecious species, the effects of paternal leakage are biased and occur more often from the non-CMS male-fertile haplotype to the CMS male-sterile haplotype. We also show that a nuclear restorer disrupts the polymorphic cytoplasmic equilibrium, leading to fixation of both the CMS allele and the restorer. Although a dominant nuclear restorer fixes, it fixes much more slowly than in the standard CMS models. Although a stable cytonuclear polymorphism is possible with "matching alleles" nuclear restoration, oscillations to low frequencies present a risk of loss by drift. Paternal leakage enhances the stability of joint cytonuclear polymorphism by reducing the chance that a CMS allele is lost by drift.  相似文献   

2.
The coexistence of females and hermaphrodites in plant populations, or gynodioecy, is a puzzle recognized by Darwin. Correns identified cytoplasmic inheritance of one component of sex expression, now known as cytoplasmic male sterility (CMS). Lewis established cytonuclear inheritance of gynodioecy as an example of genetic conflict. Although biologists have since developed an understanding of the mechanisms allowing the joint maintenance of CMS and nuclear male fertility restorer genes, puzzles remain concerning the inheritance of sex expression and mechanisms governing the origination of CMS. Much of the theory of gynodioecy rests on the assumption of maternal inheritance of the mitochondrial genome. Here we review recent studies of the genetics of plant mitochondria, and their implications for the evolution and transmission of CMS. New studies of intragenomic recombination provide a plausible origin for the chimeric ORFs that characterize CMS. Moreover, evidence suggests that nonmaternal inheritance of mitochondria may be more common than once believed. These findings may have consequences for the maintenance of cytonuclear polymorphism, mitochondrial recombination, generation of gynomonoecious phenotypes, and interpretation of experimental crosses. Finally we point out that CMS can alter the nature of the cytonuclear conflict that may have originally selected for uniparental inheritance.  相似文献   

3.
Nuclear-cytoplasmic gynodioecy is a breeding system of plants in which females and hermaphrodites co-occur in populations, and gender is jointly determined by cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Persistent polymorphism at both CMS and nuclear-restorer loci is necessary to maintain this breeding system. Theoretical models have explained how nuclear-cytoplasmic gynodioecy can be stable for certain assumptions. However, recent advances in our understanding of the genetics, population biology, and molecular mechanisms of sex determination in nuclear-cytoplasmic gynodioecious species suggest the utility of new models with different underlying assumptions. In this article, we examine different negative pleiotropic fitness effects of nuclear restorers (costs of restoration) using genetic and population assumptions based on recent literature. Specifically, we model populations with two CMS types and separate nuclear restorer loci for each CMS type. Under these assumptions, both overdominance for fitness and frequency-dependent selection at nuclear-restorer loci can support nuclear-cytoplasmic gynodioecy. Costs of restoration can be either dependent or independent of the cytoplasmic background. Seed fitness costs are more vulnerable to fixation of CMS types than pollen costs. Survivorship costs are effective at maintaining polymorphism even when total reproductive effects are low. Overall, our models display differences in the stability of nuclear-cytoplasmic gynodioecy and predicted population sex ratios that should be informative to researchers studying gynodioecy in the wild.  相似文献   

4.
Multilocus interactions (also known as Dobzhansky-Muller incompatibilities) are thought to be the major source of hybrid inviability and sterility. Because cytoplasmic and nuclear genomes have conflicting evolutionary interests and are often highly coevolved, cytonuclear incompatibilities may be among the first to develop in incipient species. Here, we report the discovery of cytoplasm-dependent anther sterility in hybrids between closely related Mimulus species, outcrossing M. guttatus and selfing M. nasutus. A novel pollenless anther phenotype was observed in F2 hybrids with the M. guttatus cytoplasm (F2G) but not in the reciprocal F2N hybrids, F1 hybrids or parental genotypes. The pattern of phenotypic segregation in the F2G hybrids and two backcross populations fit a Mendelian single-locus recessive model, allowing us to map the underlying nuclear locus to a small region on LG7 of the Mimulus linkage map. Anther sterility was associated with a 20% reduction in flower size in backcross hybrids and we mapped a major cytoplasm-dependent corolla width QTL with its peak at the anther sterility locus. We argue that the cytonuclear anther sterility seen in hybrids reflects the presence of a cryptic cytoplasmic male sterility (CMS) and restorer system within the hermaphroditic M. guttatus population and therefore name the anther sterility locus restorer-of-male-fertility (RMF). The genetic mapping of RMF is a first step toward testing hypotheses about the molecular basis, individual fitness consequences, and ecological context of CMS and restoration in a system without stable CMS-restorer polymorphism (i.e., gynodioecy). The discovery of cryptic CMS in a hermaphroditic wildflower further suggests that selfish cytoplasmic evolution may play an important, but often undetected, role in shaping patterns of hybrid incompatibility and interspecific introgression in plants.  相似文献   

5.
Robin Dean  Jonathan Arnold 《Genetica》1997,101(3):215-224
Unidirectional incompatibility selection is examined as an alternate mechanism of natural selection to cytoplasmic male sterility (CMS) for generating cytonuclear disequilibria. Differences in the dynamics and equilibrium behavior of cytonuclear disequilibria between these two cytonuclear selection models may allow for statistical tests of CMS vs. unidirectional incompatibility between mating cytotypes. Unlike CMS without migration, unidirectional incompatibility causes the cytoplasmic allele frequency to change over time rather than remain constant, and the nuclear allele frequencies hitchhike on the cytoplasmic frequencies. The decay of disequilibria is also distinctive in the absence of migration. Furthermore, in comparing both models with migration it is seen that the opportunity for internal equilibrium can be two or three times higher in a unidirectional incompatibility vs. CMS model. An example is presented that shows how unidirectional incompatibility can be statistically eliminated as a possible mechanism of cytonuclear selection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In gynodioecious plant populations, sex determination often involves both cytoplasmic male-sterility (CMS) genes and specific nuclear genes that restore male function. How gynodioecy is maintained under the joint dynamics of CMS and restorer genes remains controversial. Although many theoretical models deal with interactions between CMS genes and restorer genes with sexual phenotypes and predict changes in their frequencies, it is difficult to observe the frequencies because no molecular markers have been established for either CMS or restorer genes in well-studied gynodioecious plants. This is the first report of the frequency of a CMS gene determined using a molecular marker in natural populations of a gynodioecious plant. Using a set of CMS gene-specific polymerase chain reaction primers, we compared female and CMS gene frequencies in 18 natural populations of Raphanus sativus. Female frequency was relatively low, ranging from 0 to 0.21. In contrast, the CMS gene frequency was highly variable among populations, ranging from 0 to 1. Estimated restorer gene frequency seemed less variable than observed CMS gene frequency, probably due to higher gene flow than in the CMS gene. Genetic drift may play a role in maintaining high variability of the CMS gene, although other possibilities are not excluded.  相似文献   

7.
Gynodioecy, the coexistence of hermaphrodites and females (i.e. male-sterile plants) in natural plant populations, most often results from polymorphism at genetic loci involved in a particular interaction between the nuclear and cytoplasmic genetic compartments (cytonuclear epistasis): cytoplasmic male sterility (CMS). Although CMS clearly contributes to the coevolution of involved nuclear loci and cytoplasmic genomes in gynodioecious species, the occurrence of CMS genetic factors in the absence of sexual polymorphism (cryptic CMS) is not easily detected and rarely taken in consideration. We found cryptic CMS in the model plant Arabidopsis thaliana after crossing distantly related accessions, Sha and Mr-0. Male sterility resulted from an interaction between the Sha cytoplasm and two Mr-0 genomic regions located on chromosome 1 and chromosome 3. Additional accessions with either nuclear sterility maintainers or sterilizing cytoplasms were identified from crosses with either Sha or Mr-0. By comparing two very closely related cytoplasms with different male-sterility inducing abilities, we identified a novel mitochondrial ORF, named orf117Sha, that is most likely the sterilizing factor of the Sha cytoplasm. The presence of orf117Sha was investigated in worldwide natural accessions. It was found mainly associated with a single chlorotype in accessions belonging to a clade predominantly originating from Central Asia. More than one-third of accessions from this clade carried orf117Sha, indicating that the sterilizing-inducing cytoplasm had spread in this lineage. We also report the coexistence of the sterilizing cytoplasm with a non-sterilizing cytoplasm at a small, local scale in a natural population; in addition a correlation between cytotype and nuclear haplotype was detected in this population. Our results suggest that this CMS system induced sexual polymorphism in A. thaliana populations, at the time when the species was mainly outcrossing.  相似文献   

8.
We develop a series of models that examine the effects of differential selection between the sexes on cytonuclear polymorphism and disequilibria. A detailed analysis is provided for populations under constant fertility or viability selection censused at life stages without frequency differences in the sexes. We show analytically that cytonuclear disequilibria can be generated de novo if the cytoplasmic and nuclear loci each affect female fitness and there is a nonmultiplicative fitness interaction between them. While computer simulations demonstrate that the majority of disequilibria produced by random selection are transient and small in magnitude, measurable permanent disequilibria can result from selective differences both within and between the two sexes. We derive analytic conditions for a protected cytonuclear polymorphism and use numerical simulations to quantitate the likelihood of obtaining permanent nuclear, cytoplasmic, and cytonuclear variation under various patterns of selection. The numerical analysis identifies special selection regimes more likely to generate disequilibria and maintain cytonuclear polymorphism and reveals a direct correlation to the strength of selection. As a byproduct, our models also provide the first decomposition of the different parental contributions to cytonuclear dynamics and the analytic conditions under which selection can cause cytoplasmic frequency changes or a cytonuclear hitchhiking effect.  相似文献   

9.
The mode of inheritance of the male sterility trait is crucial for understanding the evolutionary dynamics of the sexual system gynodioecy, which is the co-occurrence of female and hermaphrodite plants in natural populations. Both cytoplasmic (CMS) and nuclear (restorer) genes are known to be involved. Theoretical models usually assume a limited number of CMS genes with each a single restorer gene, while reality is more complex. In this study, it is shown that in the gynodioecious species Plantago coronopus two new CMS-restorer polymorphisms exist in addition to the two that were already known, which means four CMS-restorer systems at the species level. Furthermore, three CMS types were shown to co-occur within a single population. All new CMS types showed a multilocus system for male fertility restoration, in which both recessive and dominant restorer alleles occur. Our finding of more than two co-occurring CMS-restorer systems each with multiple restorer genes raises the question how this complex of male sterility systems is maintained in natural populations.  相似文献   

10.
Silene vulgaris is a gynodioecious plant native to Eurasia and now found throughout much of North America. Using hermaphrodite plants from three geographic regions (Stamford, NY; Broadway,VA; and Giles Co., VA) and four local populations within each region, we employed a hierarchical crossing design to explore the geographic structure of sex determining genes. Sex determination in this species is cytonuclear involving multiple cytoplasmic male sterility and nuclear restorer loci. Due to dominance effects within nuclear restorer loci, self-fertilization of hermaphrodites heterozygous at restorer loci should produce some homozygous recessive female offspring. Female offspring may also result from outcrossing among related individuals. At greater geographic and genetic distances, mismatches between cytoplasmic and nuclear sex determining genes should also produce high frequencies of female offspring if coevolution between cytoplasmic and nuclear sex determining alleles occurs independently among widely separated populations. We found evidence of dominance effects among nuclear restorer loci but no evidence of nuclear-cytoplasmic mismatches at the regional level. Of 63 maternal lines, 55 produced at least one female offspring when self-fertilized. Outcrossing within populations produced significantly fewer female offspring than self-fertilization. Outcrossing among regions produced the lowest proportion of female offspring, significantly fewer than outcrossing among populations within regions. Regions responded differently to among-region outcrossing with pollen donors from the two Virginia regions producing far fewer female offspring with New York dams than crosses among New York populations. These results indicate that nuclear restoration is complex, involving multiple loci with epistatic interactions and that most hermaphrodites in nature are heterozygous at one or more restorer locus. Further, regional differences in restorer frequencies indicate significant genetic structure for sex determining genes at large geographic scales, perhaps reflecting invasion history.  相似文献   

11.
Dowling DK  Friberg U  Hailer F  Arnqvist G 《Genetics》2007,175(1):235-244
The symbiotic relationship between the mitochondrial and nuclear genomes coordinates metabolic energy production and is fundamental to life among eukaryotes. Consequently, there is potential for strong selection to shape interactions between these two genomes. Substantial research attention has focused on the possibility that within-population sequence polymorphism in mitochondrial DNA (mtDNA) is maintained by mitonuclear fitness interactions. Early theory predicted that selection will often eliminate mitochondrial polymorphisms. However, recent models demonstrate that intergenomic interactions can promote the maintenance of polymorphism, especially if the nuclear genes involved are linked to the X chromosome. Most empirical studies to date that have assessed cytonuclear fitness interactions have studied variation across populations and it is still unclear how general and strong such interactions are within populations. We experimentally tested for cytonuclear interactions within a laboratory population of Drosophila melanogaster using 25 randomly sampled cytoplasmic genomes, expressed in three different haploid nuclear genetic backgrounds, while eliminating confounding effects of intracellular bacteria (e.g., Wolbachia). We found sizable cytonuclear fitness interactions within this population and present limited evidence suggesting that these effects were sex specific. Moreover, the relative fitness of cytonuclear genotypes was environment specific. Sequencing of mtDNA (2752 bp) revealed polymorphism within the population, suggesting that the observed cytoplasmic genetic effects may be mitochondrial in origin.  相似文献   

12.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

13.
This study is devoted to assess sex ratio variation among 33 populations of the gynodioecious Beta vulgaris ssp. maritima in Brittany (France) and to explore the causes of this variation. We showed that three different CMS (cytoplasmic male sterility) cytotypes occurred in populations, but strongly differed for their frequencies and the frequency of their associated nuclear restorer alleles (which counteract the effect of CMS and restore male fertility). No correlation was found between CMS and restorer frequencies within populations, which has been previously interpreted as a result of stochasticity. However, neutral genetic variation did not indicate recent population bottlenecks in studied populations. Moreover, no significant correlation was found between female frequency or variance and current population size. Consequently, stochastic processes could not be the major cause of sex ratio variation. Alternatively, empirical estimations of the variation of females, CMS genes and nuclear restorer allele's frequencies were compared to theoretical predictions based on a frequency‐dependent selection model of gynodioecy. In particular, we showed that an absence of correlation between CMS and restorer frequencies could also occur without stochasticity. The large variation of sex ratio in Beta vulgaris could thus be explained by frequency‐dependent selection acting on CMS genes and restorer alleles.  相似文献   

14.
15.
Abstract.— Models allowing the coexistence of females and hermaphrodites in gynodioecious populations assume a simple genetic system of sex determination, a seed fitness advantage of females (compensation), and a negative pleiotropic effect of nuclear sex-determining genes on fitness (cost of restoration). In Lobelia siphilitica , sex is determined by both mitochondrial genes causing cytoplasmic male sterility (CMS) and nuclear genes that restore fertility when present with specific CMS haplotypes (nuclear restorers). I tested for a cost of restoration in L. siphilitica by measuring restored hermaphrodites for five fitness components and estimating the number of nuclear restorers by crosses with females carrying CMS1 and CMS2. A cost of restoration appears as a significant negative coefficient (B) in the regression model explaining fitness. I found that hermaphrodites carrying more nuclear restorer genes for CMS2 (or restorer genes of greater effect) have lower pollen viability (B =– 1.08, P = 0.001). This pollen viability cost of restoration in L. siphilitica supports the theoretical prediction that negative pleiotropic effects of restorers will exist in populations of gynodioecious species containing females. The existence of such a cost supports the view that gynodioecy can be a stable breeding system in nature.  相似文献   

16.
We develop models that describe the cytonuclear structure for either a cytoplasmic and nuclear marker in a haplodiploid species or a cytoplasmic and X-linked marker in a diploid species. Sex-specific disequilibrium statistics that summarize nonrandom cytonuclear associations in such systems are defined, and their basic Hardy-Weinberg dynamics and admixture formulae are delimited. We focus on the context of hybrid zones and develop continent-island models whereby individuals from two genetically differentiated source populations migrate into and mate within a single zone of admixture. We examine the effects of differential migration of the sexes, assortative mating by pure type females, and census time (relative to mating and migration), as well as special cases of random mating and migration subsumed under the general models. We show that pure type individuals and nonzero cytonuclear disequilibria can be maintained within a hybrid zone if there is continued migration from both source populations, and that females generally have a greater influence over these cytonuclear variables than males. The resulting theoretical framework can be used to estimate the rates of assortative mating and sex-specific gene flow in hybrid zones and other zones of admixture involving haplodiploid or sex-linked cytonuclear data.  相似文献   

17.
Male fertility in Plantago lanceolata is controlled by the interaction of cytoplasmic and nuclear genes. Different cytoplasmic male sterility (CMS) types can be either male sterile or hermaphrodite, depending on the presence of nuclear restorer alleles. In three CMS types of P. lanceolata (CMSI, CMSIIa, and CMSIIb) the number of loci involved in male fertility restoration was determined. In each CMS type, male fertility was restored by multiple genes with either dominant or recessive action and capable either of restoring male fertility independently or in interaction with each other (epistasis). Restorer allele frequencies for CMSI, CMSIIa and CMSIIb were determined by crossing hermaphrodites with ``standard' male steriles. Segregation of male steriles vs. non-male steriles was used to estimate overall restorer allele frequency. The frequency of restorer alleles was different for the CMS types: restorer alleles for CMSI were less frequent than for CMSIIa and CMSIIb. On the basis of the frequencies of male steriles and the CMS types an ``expected' restorer allele frequency could be calculated. The correlation between estimated and expected restorer allele frequency was significant.  相似文献   

18.
Fertility restoration in cytoplasmic malesterile plants (CMS) by nuclear restorer genes is one of the few useful systems for studying nuclear-mitochondrial interactions in higher eukaryotes. In CMS bean there exist multiple independently identified nuclear genes that restore fertility. Two restorer genes (Fr and Fr 2) have been characterized previously. We have genetically characterized two additional restorer genes; both restorers are single genes that behave similarly to Fr 2. We compared the linkage relationship of all four independently identified restorer genes to understand the relationship among these loci further. All four genes map to the same linkage group. It was not possible to distinguish between the two newly identified restorer genes and Fr 2. We suggest that they may be allelic.  相似文献   

19.
We examined the level of postzygotic reproductive isolation in F(1) and F(2) hybrids of reciprocal crosses between the Arabidopsis lyrata subspecies lyrata (North American) and petraea (European). Our main results are: first, the percentage of fertile pollen was significantly reduced in the F(1) and F(2) compared to the parental populations. Second, mean pollen fertility differed markedly between reciprocal crosses: 84% in the F(2) with ssp. lyrata cytoplasm and 61% in the F(2) with ssp. petraea cytoplasm. Third, 17% of the F(2) with ssp. petraea cytoplasm showed male sterility (produced less than 30 pollen grains in our subsample). The hybrids were female fertile. We used QTL mapping to find the genomic regions that determine pollen fertility and that restore cytoplasmic male sterility (CMS). In the F(2) with ssp. lyrata cytoplasm, an epistatic pair of QTLs was detected. In the reciprocal F(2) progeny, four QTLs demonstrated within-population polymorphism for hybrid male sterility. In addition, in the F(2) with ssp. petraea cytoplasm, there was a strong male fertility restorer locus on chromosome 2 where a cluster of CMS restorer gene-related PPR genes have been found in A. lyrata. Our results underline the importance of cytonuclear interactions in understanding genetics of the early stages of speciation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号