首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diglycerol phosphate accumulates under salt stress in the archaeon Archaeoglobus fulgidus (L. O. Martins, R. Huber, H. Huber, K. O. Stetter, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 63:896–902, 1997). This solute was purified after extraction from the cell biomass. In addition, the optically active and the optically inactive (racemic) forms of the compound were synthesized, and the ability of the solute to act as a protecting agent against heating was tested on several proteins derived from mesophilic or hyperthermophilic sources. Diglycerol phosphate exerted a considerable stabilizing effect against heat inactivation of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and Thermococcus litoralis glutamate dehydrogenase. Highly homologous and structurally well-characterized rubredoxins from Desulfovibrio gigas, Desulfovibrio desulfuricans (ATCC 27774), and Clostridium pasteurianum were also examined for their thermal stabilities in the presence or absence of diglycerol phosphate, glycerol, and inorganic phosphate. These proteins showed different intrinsic thermostabilities, with half-lives in the range of 30 to 100 min. Diglycerol phosphate exerted a strong protecting effect, with approximately a fourfold increase in the half-lives for the loss of the visible spectra of D. gigas and C. pasteurianum rubredoxins. In contrast, the stability of D. desulfuricans rubredoxin was not affected. These different behaviors are discussed in the light of the known structural features of rubredoxins. The data show that diglycerol phosphate is a potentially useful protein stabilizer in biotechnological applications.  相似文献   

2.
3.

Background  

Chimeric hybrids derived from the rubredoxins of Pyrococcus furiosus (Pf) and Clostridium pasteurianum (Cp) provide a robust system for the characterization of protein conformational stability and dynamics in a differential mode. Interchange of the seven nonconserved residues of the metal binding site between the Pf and Cp rubredoxins yields a complementary pair of hybrids, for which the sum of the thermodynamic stabilities is equal to the sum for the parental proteins. Furthermore, the increase in amide hydrogen exchange rates for the hyperthermophile-derived metal binding site hybrid is faithfully mirrored by a corresponding decrease for the complementary hybrid that is derived from the less thermostable rubredoxin, indicating a degree of additivity in the conformational fluctuations that underlie these exchange reactions.  相似文献   

4.
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.  相似文献   

5.
The solution structure of reduced Clostridium pasteurianum rubredoxin (MW 6100) is reported here. The protein is highly paramagnetic, with iron(II) being in the S=2 spin state. The Hβ protons of the ligating cysteines are barely observed, and not specifically assigned. Seventy-six percent of the protons have been assigned and 1267 NOESY peaks (of which 1037 are meaningful) have been observed. Nonselective T 1 measurements have been measured by recording four nonselective 180°-τ-NOESY at different τ values, and fitting the intensity recoveries to an exponential recovery. Thirty-six metal-proton upper and lower distance constraints have been obtained from the above measurements. The use of such constraints is assessed with respect to spin delocalization on the sulfur donor atoms. The solution structure obtained with the program DYANA has been refined through restrained energy minimization. A final family of 20 conformers is obtained with no distance violations larger than 0.24?Å, and RMSD values to the mean structure of 0.58 and 1.03?Å for backbone and all heavy atoms, respectively (measured on residues 3–53). The structure is compared to the X-ray structure of the oxidized and of the zinc substituted protein, and to the available structures of other rubredoxins. In particular, the comparison with the crystal structure and the solution structure of the Zn derivative of the highly thermostable Pyrococcus furiosus rubredoxin suggested that the relatively low thermal stability of the clostridial rubredoxin may be tentatively ascribed to the loosening of its secondary structure elements. This research is a further achievement at the frontier of solution structure determinations of paramagnetic proteins.  相似文献   

6.
Detection of NAD(P)H--rubredoxin oxidoreductases in Clostridia   总被引:1,自引:0,他引:1  
Rubredoxin mediates the electron flow from NAD(P)H-rubredoxin oxidoreductase to metmyoglobin. Metmyoglobin is a good electron acceptor of the reduced rubredoxin and a poor electron acceptor of the NAD(P)H diaphorase activities from the clostridial extracts; these properties allow detecting and measuring NAD(P)H-rubredoxin oxidoreductase activities in crude extracts of Clostridia. The metmyoglobin reduction is quantitatively determined by spectrophotometric measurements at 581 nm. The rate of metmyoglobin reduction is constant for at least 3 min in the presence of 0.1 to 0.6 mg/ml of extract from Clostridium acetobutylicum and 0.05–0.5 nmol/ml of rubredoxin. In C. pasteurianum and C. tyrobutyricum measurement of the rubredoxin chromophore reduction by crude extracts in the presence of NAD(P)H requires a large amount of rubredoxin; these unphysiological concentrations allow unspecific enzymatic reactions which lead to erroneous interpretations.  相似文献   

7.
 The single Fe(II) in reduced rubredoxin from Clostridium pasteurianum was found to be quantitatively displaced by either Cd2+ or Zn2+ when a modest molar excess of the substituting metal salt was anaerobically incubated with the reduced rubredoxin under mild conditions, namely, room temperature, pH 5.4–8.4, and no protein denaturants. Under the same conditions, cadmium-for-zinc substitution was also achieved upon aerobic incubation of the zinc-substituted rubredoxin with a modest molar excess of Cd2+. Displacements of Fe(II) from the reduced rubredoxin were not observed upon anaerobic incubation with Ni2+, Co2+, or VO2+ salts, and no reaction with any of the divalent metal ions was observed for the oxidized [Fe(III)] rubredoxin. Fe(II) could not be re-inserted into the Zn- or Cd-substituted rubredoxins without resorting to protein denaturation. 1H and 113Cd NMR experiments showed that the cadmium-substituted rubredoxin prepared by the non-denaturing substitution method retained the pseudotetrahedral M(SCys)4 coordination geometry and secondary structural elements characteristic of the native rubredoxin, and that "unzipping" of the β-sheet did not occur during metal substitution. Rates of Fe(II) displacement by M2+ (M=Cd or Zn) increased with increasing M2+/rubredoxin ratio, decreasing pH, and lower ionic strength. The substitution rates were faster for M=Cd than for M=Zn. Rates of Cd2+ substitution into a V8A-mutated rubredoxin were significantly faster than for the wild-type protein. The side-chain of V8 is on the protein surface and close to the metal-ligating Cys42Sγ at the M(SCys)4 site. Therefore, the rate-limiting step in the substitution process is suggested to involve direct attack of the [M(SCys)4]2– site by the incoming M2+, without global unfolding of the protein. Implications of these results for metal ion incorporation into rubredoxins in vivo are discussed. Received: 29 May 1998 / Accepted: 11 August 1998  相似文献   

8.
Determination of the complete amino acid sequence of the rubredoxin isolated from the sulfate reducing bacterium Desulfovibriogigas showed that the molecule consists of a single polypeptide chain of 52 residues. The sequence of the first 42 residues was determined using an automatic Protein Sequencer. Peptides derived from tryptic hydrolysis and from specific cleavage at tryptophan residue were used to construct the total sequence. Compared with the sequence of Desulfovibriovulgaris rubredoxin, 37 positions are identical, and with the sequences of Clostridiumpasteurianum, Peptostreptococcuselsdenii, Micrococcusaerogenes and D.vulgaris rubredoxins, 20 matching residues occur. A crystallographic study of the D.gigas rubredoxin is in progress.  相似文献   

9.
Rubredoxin was purified from Desulfovibrio vulgaris Miyazaki. It was sequenced and some of its properties determined. Rubredoxin is composed of 52 amino acids. It is highly homologous to that from D. vulgaris Hildenborough. Its N-methionyl residue is partially formalated. The millimolar absorption coefficients of the rubredoxin at 489 nm and 280 are 8.1 and 18.5, respectively, and the standard redox potential is +5 mB, which is slightly higher than those of other rubredoxins. Rubredoxin, as well as cytochrome c-553, was reduced with lactate by the action of lactate dehydrogenase of this organism, and the rection was stimulated with 2-methyl-1, 4-naphthoquinone. It is suggested that rubredoxin, in collaboration with membraous quinone, functions as natural electron carrier for cytoplasmic lactate dehydrogenase of this organism, whereas cytochrome c-553 plays the same role for periplasmic lactate dehydrogenase.  相似文献   

10.
A two cluster (4Fe4S) ferredoxin and a rubredoxin have been isolated from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Their amino acid compositions are reported and compared to those of other iron-sulfur proteins.The ferredoxin contains 8 cysteine residues, 8 atoms of iron and 8 atoms of labile sulfur per molecule; its minimum molecular weight is 6163. The protein exhibits an absorbance ratio of A385A283 = 0.74. Storage results in a bleaching of the chromophore; the denatured ferredoxin is reconstitutable with iron and sulfide. The instability temperature is 52°C.The rubredoxin does not differ markedly from rubredoxins from other anaerobic bacteria.  相似文献   

11.
The Ni(II) and Zn(II) derivatives of Desulfovibrio vulgaris rubredoxin (DvRd) have been studied by NMR spectroscopy to probe the structure at the metal centre. The βCH2 proton pairs from the cysteines that bind the Ni(II) atom have been identified using 1D nuclear Overhauser enhancement (NOE) difference spectra and sequence specifically assigned via NOE correlations to neighbouring protons and by comparison with the published X-ray crystal structure of a Ni(II) derivative of Clostridium pasteurianum rubredoxin. The solution structures of DvRd(Zn) and DvRd(Ni) have been determined and the paramagnetic form refined using pseudocontact shifts. The determination of the magnetic susceptibility anisotropy tensor allowed the contact and pseudocontact contributions to the observed chemical shifts to be obtained. Analysis of the pseudocontact and contact chemical shifts of the cysteine Hβ protons and backbone protons close to the metal centre allowed conclusions to be drawn as to the geometry and hydrogen-bonding pattern at the metal binding site. The importance of NH–S hydrogen bonds at the metal centre for the delocalization of electron spin density is confirmed for rubredoxins and can be extrapolated to metal centres in Cu proteins: amicyanin, plastocyanin, stellacyanin, azurin and pseudoazurin.  相似文献   

12.
Rubredoxin is a small iron-sulfur (FeS4) protein involved in oxidation–reduction reactions. The side chain of Leu41 near the iron-sulfur center has two conformations, which we suggested previously serve as a gate for a water molecule during the electron transfer process. To establish the role of residue 41 in electron transfer, an [L41A] mutant of Clostridium pasteurianum rubredoxin was constructed and crystallized in both oxidation states. Despite the lack of the gating side chain in this protein, the structure of the reduced [L41A] rubredoxin reveals a specific water molecule in the same position as observed in the reduced wild-type rubredoxin. In contrast, both the wild-type and [L41A] rubredoxins in the oxidized state do not have water molecules in this location. The reduction potential of the [L41A] variant was ~50 mV more positive than wild-type. Based on these observations, it is proposed that the site around the S of Cys9 serves as a port for an electron acceptor. Lastly, the Fe–S distances of the reduced rubredoxin are expanded, while the hydrogen bonds between S of the cysteines and the backbone amide nitrogens are shortened compared to its oxidized counterpart. This small structural perturbation in the Fe(II)/Fe(III) transition is closely related to the small energy difference which is important in an effective electron transfer agent.  相似文献   

13.
With PCR methods, the rubredoxin gene was systematically identified among 11 strains of Clostridium butyricum; this ubiquity means major functions in the metabolism of the Clostridia. The 11 PCR products allowed deduction of a sequence of 26 amino acids corresponding to positions 11–36 of the rubredoxin. They all contained the tyrosines at positions 11 and 13 and the phenylalanine at position 30 characteristic of the rubredoxin, but differed at positions 14–17, 20, 25, 29, and 31, allowing determination of three types of rubredoxins among these 11 strains of C. butyricum. Received: 13 October 1998 / Accepted: 23 November 1998  相似文献   

14.
Different strategies have been used to express synthetic genes all encoding Clostridium pasteurianum 2[4Fe-4S] ferredoxin (Fd) in Escherichia coli. The polypeptide can be produced as the C-terminal addition to a hybrid Cro::Protein A fusion protein lacking the metallic centers. The incorporation of the [4Fe-4S] clusters into the cleaved apoFd cannot be carried out in the same conditions as those affording holoFd from purified C. pasteurianum apoFd. In contrast, fully functional Fds can be produced from non-fused synthetic genes under the dependence of strong promoters. The yields of recombinant Fd, although sufficient to purify significant quantities of protein, are limited by the very short half-life of the 2[4Fe-4S] Fd in E. coli, irrespective of the expression system used. These features are characteristic of 2[4Fe-4S] Fds when compared with the far more stable recombinant rubredoxin, and probably other small iron-sulfur proteins which have already been produced in high yields. The reasons for the high turnover of 2[4Fe-4S] Fds are discussed.  相似文献   

15.
Summary The three-dimensional structures of bacterial high potential iron protein (HIPIP) and rubredoxin have been searched for repeats to test whether these molecules evolved by independent tandem gene duplications. HIPIP has no structural repeats in spite of the observed repeated pattern in the amino acid sequence fromRhodopseudomonas gelatinosa. Rubredoxin fromClostridium pasteurianum has repeated hairpin loops of ten alpha-carbon atoms on both sides of the active centre iron-sulphur complex, which can be superposed within a root mean square deviation of 0.84 Å by rotating about a local pseudo-dyad axis. The structural repeat matches a weak repeat in the amino acid sequence. It is concluded that the sequence repeats in HIPIP are probably a coincidence but that rubredoxin may have evolved by gene duplication from a dimer of two primitive hairpin loops.  相似文献   

16.
1. Rubredoxin isolated from the green photosynthetic bacterium Chloropseudomonas ethylica was similar in composition to those from anaerobic fermentative bacteria. Amino acid analysis indicated a minimum molecular weight of 6352 with one iron atom per molecule. 2. The circular-dichroism and electron-paramagnetic-resonance spectra of Ch. ethylica rubredoxin showed many similarities to those of Clostridium pasteurianum, but suggested that there may be subtle differences in the protein conformation about the iron atom. 3. Mössbauer-effect measurements on rubredoxin from Cl. pasteurianum and Ch. ethylica showed that in the oxidized state the iron (high-spin Fe3+) has a hyperfine field of 370±3kG, whereas in the reduced state (high-spin Fe2+) the hyperfine field tensor is anisotropic with a component perpendicular to the symmetry axis of the ion of about −200kG. For the reduced protein the sign of the electric-field gradient is negative, i.e. the ground state of the Fe2+ is a [unk] orbital. There is a large non-cubic ligand-field splitting (Δ/k=900°K), and a small spin-orbit splitting (D~+4.4cm−1) of the Fe2+ levels. 4. The contributions of core polarization to the hyperfine field in the Fe3+ and Fe2+ ions are estimated to be −370 and −300kG respectively. 5. The significance of these results in interpretation of the Mössbauer spectra of other iron–sulphur proteins is discussed.  相似文献   

17.
Poultry are considered the major reservoir for Campylobacter jejuni, a leading bacterial cause of human food-borne diarrhea. To understand the ecology of C. jejuni and develop strategies to control C. jejuni infection in the animal reservoir, we initiated studies to examine the potential role of anti-Campylobacter maternal antibodies in protecting young broiler chickens from infection by C. jejuni. Using an enzyme-linked immunosorbent assay (ELISA), the prevalence of anti-C. jejuni antibodies in breeder chickens, egg yolks, and broilers from multiple flocks of different farms were examined. High levels of antibodies to the organism were detected in serum samples of breeder chickens and in egg yolk contents. To determine the dynamics of anti-Campylobacter maternal antibody transferred from yolks to hatchlings, serum samples collected from five broiler flocks at weekly intervals from 1 to 28 or 42 days of age were also examined by ELISA. Sera from the 1-day and 7-day-old chicks showed high titers of antibodies to C. jejuni. Thereafter, antibody titers decreased substantially and were not detected during the third and fourth weeks of age. The disappearance of anti-Campylobacter maternal antibodies during 3 to 4 weeks of age coincides with the appearance of C. jejuni infections observed in many broiler chicken flocks. As shown by immunoblotting, the maternally derived antibodies recognized multiple membrane proteins of C. jejuni ranging from 19 to 107 kDa. Moreover, in vitro serum bactericidal assays showed that anti-Campylobacter maternal antibodies were active in antibody-dependent complement-mediated killing of C. jejuni. Together, these results highlight the widespread presence of functional anti-Campylobacter antibodies in the poultry production system and provide a strong rationale for further investigation of the potential role of anti-C. jejuni maternal antibodies in protecting young chickens from infection by C. jejuni.  相似文献   

18.
Ferredoxin, flavodoxin, and rubredoxin were purified to homogeneity from Clostridium formicoaceticum and characterized. Variation of the iron concentration of the growth medium caused substantial changes in the concentrations of ferredoxin and flavodoxin but not of rubredoxin. The ferredoxin has a molecular weight of 6,000 and is a four iron-four sulfur protein with eight cysteine residues. The spectrum is similar to that of other ferredoxins. The molar extinction coefficients are 22.6 X 10(3) and 17.6 X 10(3) at 280 and 390 nm, respectively. From 100 g wet weight of cells grown with 3.6 microM iron and with 40 microM iron, 5 and 20 mg offerredoxin were isolated, respectively. The molecular weight of rubredoxin is 5,800 and it contains one iron and four cysteines. The UV-visible absorption spectrum is dissimilar to those of other rubredoxins in that the 373 nm absorption peak is quite symmetric, lacking the characteristic 350-nm shoulder found in other rubredoxins. The flavodoxin is a 14,500-molecular-weight protein which contains 1 mol of flavin mononucleotide per mol of protein. It forms a stable, blue semiquinone upon light irradiation in the presence of EDTA or during enzymatic reduction. When cells were grown in low-iron medium, flavodoxin constituted at least 2% of the soluble cell protein; however, it was not detected in extracts of cells grown in high-iron medium. The rubredoxin and ferredoxin expressed during growth in low-iron and high-iron media are identical as judged by iron, inorganic sulfide, and amino acid analysis, as well as light absorption spectroscopy.  相似文献   

19.
Rubredoxins contain a mononuclear iron tetrahedrally coordinated by four cysteinyl sulfurs. We have studied the wild-type protein from Clostridium pasteurianum and two mutated forms, C9S and C42S, in the oxidized and reduced states, with Mössbauer, integer-spin EPR, and magnetic circular dichroism (MCD) spectroscopies. The Mössbauer spectra of the ferric C42S and C9S mutant forms yielded zero-field splittings, D=1.2?cm?1, that are about 40% smaller than the D-value of the wild-type protein. The 57Fe hyperfine coupling constants were found to be ca. 8% larger than those of the wild-type proteins. The present study also revealed that the ferric wild-type protein has δ=0.24±0.01?mm/s at 4.2?K rather than δ=0.32?mm/s as reported in the literature. The Mössbauer spectra of both dithionite-reduced mutant proteins revealed the presence of two ferrous forms, A and B. These forms have isomer shifts δ=0.79?mm/s at 4.2?K, consistent with tetrahedral Fe2+(Cys)3(O-R) coordination. The zero-field splittings of the two forms differ substantially; we found D=?7±1?cm?1, E/D=0.09 for form A and D=+6.2±1.3?cm?1, E/D=0.15 for form B. Form A exhibits a well-defined integer-spin EPR signal; from studies at X- and Q-band we obtained g z =2.08±0.01, which is the first measured g-value for any ferrous rubredoxin. It is known from X-ray crystallographic studies that ferric C42S rubredoxin is coordinated by a serine oxygen. We achieved 75% reduction of C42S rubredoxin by irradiating an oxidized sample at 77?K with synchrotron X-rays; the radiolytic reduction produced exclusively form A, suggesting that this form represents a serine-bound Fe2+ site. Studies in different buffers in the pH?6–9 range showed that the A:B ratios, but not the spectral parameters of A and B, are buffer dependent, but no systematic variation of the ratio of the two forms with pH was observed. The presence of glycerol (30–50% v/v) was found to favor the B form. Previous absorption and circular dichroism studies of reduced wild-type rubredoxin have suggested d-d bands at 7400, 6000, and 3700?cm?1. Our low-temperature MCD measurements place the two high-energy transitions at ca. 5900 and 6300?cm?1; a third d-d transition, if present, must occur with energy lower than 3300?cm?1. The mutant proteins have d-d transitions at slightly lower energy, namely 5730, 6100?cm?1 in form A and 5350, 6380?cm?1 in form B.  相似文献   

20.
G Hernández  D M LeMaster 《Biochemistry》2001,40(48):14384-14391
Spatially localized differences in the conformational dynamics of the rubredoxins from the hyperthermophile Pyrococcus furiosus (Pf) and the mesophile Clostridium pasteurianum (Cp) are monitored via amide exchange measurements. As shown previously for the hyperthermophile protein, nearly all backbone amides of the Cp rubredoxin exhibit EX(2) hydrogen exchange kinetics with conformational opening rates of >1 s(-)(1). Significantly slower amide exchange is observed for Pf rubredoxin in the region surrounding the metal site and the proximal end of the three-stranded beta-sheet, while for the rest of the structure, the exchange rates at 23 degrees C are similar for both proteins. For the multiple-turn region comprising residues 14-32 in both rubredoxins, the uniformity of both the exchange rate constants and the values of the activation energy at the slowly exchanging sites is consistent with a model of solvent exposure via a subglobal cooperative conformational opening. In contrast to the common expectation of increased rigidity in the hyperthermophile proteins, below room temperature Pf rubredoxin exhibits a larger apparent flexibility in this multiple-turn region. The smaller enthalpy for the conformational opening process of this region in Pf rubredoxin reflects the much weaker temperature dependence of the underlying conformational equilibrium in the hyperthermophile protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号