共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. 下载免费PDF全文
The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase. 相似文献
2.
Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. 总被引:2,自引:5,他引:2 下载免费PDF全文
J Ye M L Dickens R Plater Y Li J Lawrence W R Strohl 《Journal of bacteriology》1994,176(20):6270-6280
A contiguous region of about 30 kbp of DNA putatively encoding reactions in daunomycin biosynthesis was isolated from Streptomyces sp. strain C5 DNA. The DNA sequence of an 8.1-kbp EcoRI fragment, which hybridized with actI polyketide synthase (PKS) and actIII polyketide reductase (PKR) gene probes, was determined, revealing seven complete open reading frames (ORFs), two in one cluster and five in a divergently transcribed cluster. The former two genes are likely to encode PKR and a bifunctional cyclase/dehydrase. The five latter genes encode: (i) a homolog of TcmH, an oxygenase of the tetracenomycin biosynthesis pathway; (ii) a PKS Orf1 homolog; (iii) a PKS Orf2 homolog (chain length factor); (iv) a product having moderate sequence identity with Escherichia coli beta-ketoacyl acyl carrier protein synthase III but lacking the conserved active site; and (v) a protein highly similar to several acyltransferases. The DNA within the 8.1-kbp EcoRI fragment restored daunomycin production to two dauA non-daunomycin-producing mutants of Streptomyces sp. strain C5 and restored wild-type antibiotic production to Streptomyces coelicolor B40 (act VII; nonfunctional cyclase/dehydrase), and to S. coelicolor B41 (actIII) and Streptomyces galilaeus ATCC 31671, strains defective in PKR activity. 相似文献
3.
4.
【目的】Streptomyces sp. PRh5是从东乡野生稻(Oryza rufipogon Griff.)中分离获得的一株对细菌和真菌都具有较强抗菌活性的内生放线菌。为深入研究PRh5菌株抗菌机制及挖掘次级代谢产物基因资源,有必要解析PRh5菌株的基因组序列信息。【方法】采用高通量测序技术对PRh5菌株进行全基因组测序,然后使用相关软件对测序数据进行基因组组装、基因预测与功能注释、直系同源簇(COG)聚类分析、共线性分析及次级代谢产物合成基因簇预测等。【结果】基因组组装获得290 contigs,整个基因组大小约11.1 Mb,GC含量为71.1%,序列已提交至GenBank数据库,登录号为JABQ00000000。同时,预测得到50个次级代谢产物合成基因簇。【结论】将为Streptomyces sp. PRh5的功能基因组学研究及相关次级代谢产物的生物合成途径与异源表达研究提供基础。 相似文献
5.
Cloning, sequencing, and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. 下载免费PDF全文
A fragment of DNA was cloned from the Streptomyces griseus K-63 genome by using genes (act) for the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor as a probe. Sequencing of a 5.4-kb segment of the cloned DNA revealed a set of five gris open reading frames (ORFs), corresponding to the act PKS genes, in the following order: ORF1 for a ketosynthase, ORF2 for a chain length-determining factor, ORF3 for an acyl carrier protein, ORF5 for a ketoreductase, and ORF4 for a cyclase-dehydrase. Replacement of the gris genes with a marker gene in the S. griseus genome by using a single-stranded suicide vector propagated in Escherichia coli resulted in loss of the ability to produce griseusins A and B, showing that the five gris genes do indeed encode the type II griseusin PKS. These genes, encoding a PKS that is programmed differently from those for other aromatic PKSs so far available, will provide further valuable material for analysis of the programming mechanism by the construction and analysis of strains carrying hybrid PKS. 相似文献
6.
Cloning and sequencing of a bile acid-inducible operon from Eubacterium sp. strain VPI 12708. 总被引:4,自引:4,他引:4 下载免费PDF全文
Two bile acid-inducible polypeptides from Eubacterium sp. strain VPI 12708 with molecular weights of 27,000 and approximately 45,000 have previously been shown to be encoded by genes residing on a 2.9-kb EcoRI fragment. We now report the cloning and sequencing of three additional overlapping DNA fragments upstream from this EcoRI fragment. Together, these four fragments contain a large segment of a bile acid-inducible operon which encodes the 27,000- and 45,000-Mr (now shown to be 47,500-Mr) polypeptides and open reading frames potentially coding for four additional polypeptides with molecular weights of 59,500, 58,000, 19,500, and 9,000 to 11,500. A bile acid-inducible polypeptide with an apparent Mr of 23,500, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was purified to homogeneity, and the N-terminal amino acid sequence that was obtained matched the sequence deduced from the open reading frame coding for the 19,500-Mr polypeptide. A short DNA segment containing the 3' downstream end of the gene coding for the 47,500-Mr polypeptide was not successfully cloned but was directly sequenced from DNA fragments synthesized by polymerase chain reaction. The mRNA initiation site for the bile acid-inducible operon was shown by primer extension to be immediately upstream from the gene encoding the 58,000-Mr polypeptide. A potential promoter region upstream from the mRNA initiation site displayed significant homology with the promoter regions of previously identified bile acid-inducible genes from Eubacterium sp. strain VPI 12708. We hypothesize that this bile acid-inducible operon codes for most of the enzymes involved in the bile acid 7 alpha-dehydroxylation pathway in this bacterium. 相似文献
7.
Yuanyuan Lu Yingying Xing Chen Chen Jiansheng Lu Yihua Ma Tao Xi 《Phytochemistry letters》2012,5(3):459-462
Two new anthraquinone glycosides Strepnoneside A (1) and Strepnoneside B (2), together with Chromomycin A3 (3), were isolated from cultures of the marine Streptomyces sp. strain. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. Compound 3 exhibited cytotoxic activities against HCT 116 cell lines (IC50 = 300 ± 11 pM). 相似文献
8.
Putative protochlorophyllide reductase cDNA clones (252 and 113) were isolated from an etiolated-oat (Avena sativa) cDNA library. These were used to indirectly characterize a further clone, p127, isolated from a lambda-phage gt11 cDNA library. The latter (1.15 kb in length) was sequenced, and the derived amino acid sequence was shown to be remarkably similar to that derived from chemical analysis of a CNBr-cleavage fragment of the purified reductase, p127 codes for more than 95% of the reductase protein. 相似文献
9.
Cloning and Characterization of Alginate Lyase from a Marine Bacterium Streptomyces sp. ALG-5 总被引:2,自引:0,他引:2
A marine bacterium was isolated from seaweeds for its ability to degrade alginate. Analysis of 16S ribosomal DNA sequence
and chemotaxonomic characterizations revealed that the strain belongs to Streptomyces. The alginate lyase gene of Streptomyces sp. ALG-5 was cloned by using PCR with the specific primer designed from homologous nucleotide sequences. The consensus sequences
of N-terminal YXRSELREM and C-terminal YFKAGXYXQ were conserved in the ALG-5 alginate lyase gene. The recombinant alginate
lyase was purified by using Ni-Sepharose affinity chromatography. The alginate lyase appears to be poly-guluronate lyase degrading
poly-G block preferentially than poly-M block. The degraded products were determined to be di-, tri-, tetra- and pentasaccharides
by using BioGel P-2 gel filtration chromatography and ionization mass spectroscopy method. 相似文献
10.
J.-C. Wang M. Sakakibara J.-Q. Liu T. Dairi N. Itoh 《Applied microbiology and biotechnology》1999,52(3):386-392
The gene encoding phenylacetaldehyde reductase (PAR), a useful biocatalyst for producing chiral alcohols, was cloned from
the genomic DNA of the styrene-assimilating Corynebacterium sp. strain ST-10. The gene contained an opening reading frame consisting of 1,158 nucleotides corresponding to 385 amino
acid residues. The subunit molecular weight was calculated to be 40,299, which was in agreement with that determined by polyacrylamide
gel electrophoresis. The enzyme was sufficiently expressed in recombinant Escherichia coli cells for practical use and purified to homogeneity by three-column chromatography steps. The predicted amino acid sequence
displayed only 20–29% identity with zinc-containing, NAD+-dependent, long-chain alcohol dehydrogenases. Nevertheless, the probable NAD+- and zinc-binding sites are conserved although one of the three catalytic zinc-binding residues of the zinc-containing, long-chain
alcohol dehydrogenases was substituted by Asp in PAR. The protein contains 7.6 mol zinc/mol tetramer. Therefore, the enzyme
was considered as a new member of zinc-containing, long-chain alcohol dehydrogenases with a particular and broad substrate
specificity.
Received: 5 March 1999 / Received last revision: 10 May 1999 / Accepted: 16 May 1999 相似文献
11.
《Journal of Fermentation and Bioengineering》1989,67(3):212-214
5-Keto-d-fructose reductase was purified about 300-fold from a mutant strain derived from Corynebacterium sp. SHS 0007 (ATCC 31090). The enzyme appeared to be homogeneous by SDS-polyacrylamide gel electrophoresis. The enzyme converted 5-keto-d-fructose to l-sorbose in the presence of NADPH. The reduction did not occur in the presence of NADH. The reverse reaction was not observed. The molecular weight of the enzyme was estimated to be about 33,000 by gel filtration and SDS-polyacrylamide gel electrophoresis. The enzyme appeared to be monomeric. The optimum pH was 6.0–7.0 for the reductase. The Km value (pH 7.0, 30°C) of the enzyme for 5-keto-d-fructose was 5.9 mM. The enzyme was relatively inactive on 2, 5-diketo-d-gluconate in the presence of NADPH. 相似文献
12.
13.
Cloning, characterization, and sequence analysis of the clcE gene encoding the maleylacetate reductase of Pseudomonas sp. strain B13. 下载免费PDF全文
A 3,167-bp PstI fragment of genomic DNA from Pseudomonas sp. strain B13 was cloned and sequenced. The gene clcE consists of 1,059 nucleotides encoding a protein of 352 amino acids with a calculated mass of 37,769 Da which showed maleylacetate reductase activity. The protein had significant sequence similarities with the polypeptides encoded by tcbF of pP51 (59.4% identical positions), tfdF of pJP4 (55.1%), and tftE of Burkholderia cepacia AC1100 (53.1%). The function of TcbF as maleylacetate reductase was established by an enzyme assay. 相似文献
14.
Minimal Streptomyces sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis. 下载免费PDF全文
The structure of the Streptomyces sp. strain C5 daunorubicin type II polyketide synthase (PKS) gene region is different from that of other known type II PKS gene clusters. Directly downstream of the genes encoding ketoacylsynthase alpha and beta (KS alpha, KS beta) are two genes (dpsC, dpsD) encoding proteins of unproven function, both absent from other type II PKS gene clusters. Also in contrast to other type II PKS clusters, the gene encoding the acyl carrier protein (ACP), dpsG, is located about 6.8 kbp upstream of the genes encoding the daunorubicin KS alpha and KS beta. In this work, we demonstrate that the minimal genes required to produce aklanonic acid in heterologous hosts are dpsG (ACP), dauI (regulatory activator), dpsA (KS alpha), dpsB (KS beta), dpsF (aromatase), dpsE (polyketide reductase), and dauG (putative deoxyaklanonic acid oxygenase). The two unusual open reading frames, dpsC (KASIII homolog lacking a known active site) and dpsD (acyltransferase homolog), are not required to synthesize aklanonic acid. Additionally, replacement of dpsD or dpsCD in Streptomyces sp. strain C5 with a neomycin resistance gene (aphI) results in mutant strains that still produced anthracyclines. 相似文献
15.
Purification and characterization of the IM-2-binding protein from Streptomyces sp. strain FRI-5. 下载免费PDF全文
IM-2 [(2R,3R,1'R)-2-(1'-hydroxybutyl)-3-(hydroxymethyl)butanolide] of Streptomyces sp. strain FRI-5 is one of the butyrolactone autoregulators of Streptomyces species and triggers production of blue pigment as well as the nucleoside antibiotics showdomycin and minimycin. A tritium-labeled IM-2 analogue, 2,3-trans-2(1'-beta-hydroxy-[4',5'-3H]pentyl)-3-(hydroxymethyl)butano lide ([3H]IM-2-C5; 40 Ci/mmol), was synthesized for a competitive binding assay, and an IM-2-specific binding protein was found to be present in the crude cell extract of Streptomyces sp. strain FRI-5. During cultivation for 24 h, the specific IM-2-binding activity increased rapidly, reached a plateau at 10 to 14 h, and declined sharply thereafter, showing only 6% activity after 24 h of cultivation. A Scatchard plot of the binding data demonstrated that the dissociation constant (Kd) for [3H]IM-2-C5 was 1.3 nM, while the Kd for a 3H-labeled virginiae butanolide (VB) analogue, 2-(1'-alpha-hydroxy-[6',7'-3H]heptyl)-3-(hydroxymethyl)butanolide ([3H]VB-C7), another butyrolactone autoregulator possessing the opposite configuration at C-1' was 35 nM. Furthermore, at a 15-fold molar excess, the effectiveness of several autoregulators as nonlabeled competitive ligands against [3H]IM-2-C5 was IM-2 type > VB-C type >> A-factor type, indicating that the binding protein in Streptomyces sp. strain FRI-5 is highly specific toward IM-2. Ultracentrifugation showed that the IM-2-binding protein is present almost exclusively in the 100,000 x g supernatant fraction, indicating that the binding protein is a cytoplasmic soluble protein. The binding protein was purified by ammonium sulfate precipitation, DEAE-Sephacel chromatography, Sephacryl S-100 HR gel filtration, DEAE-5PW high-performance liquid chromatography (HPLC), and phenyl-5PW HPLC. The apparent Mr of the native IM-2-binding protein as determined by molecular sieve HPLC was about 60,000 in the presence of 0.5, 0.3, or 0.1 M KCl, while by sodium dodecyl sulfate-polyacrylamide gel electrophoresis it was about 27,000, suggesting that the native binding protein is present in the form of a dimer. 相似文献
16.
H Yamamoto-Otake Y Koyama T Horiuchi E Nakano 《Applied and environmental microbiology》1991,57(5):1418-1422
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum. 相似文献
17.
Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. 总被引:4,自引:0,他引:4 下载免费PDF全文
An agarase gene (agaA) was cloned from genomic DNA of Vibrio sp. strain JT0107. An open reading frame of 2,985 nucleotides gave a primary translation product composed of the mature protein, agarase 0107 (975 amino acid residues, with a molecular weight of 105,271) and a signal peptide of 20 amino acid residues at the N terminus. Comparison of the deduced amino acid sequence of agarase 0107 with those of Streptomyces coelicolor and Pseudomonas atlantica suggests that these enzymes share two regions in common. The AgaA protein which was expressed in Escherichia coli had the agarase activity. Agarase 0107 hydrolyzes not only agarose but also neoagarotetraose [O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galact opy ranosyl (1-->3)-D-galactose] to yield neoagarobiose [O-3,6-anhydro-alpha-L-galactopyranosyl(1-->3)-D-galactose]. This is a quite unique characteristic for a beta-agarase. 相似文献
18.
Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. 总被引:3,自引:7,他引:3 下载免费PDF全文
Pseudomonas sp. strain NRRLB-12227 degrades the s-triazine melamine by a six-step pathway which allows it to use melamine and pathway intermediates as nitrogen sources. With the plasmid pLG221, mutants defective in five of the six steps of the pathway were generated. Tn5-containing-EcoRI fragments from these mutants were cloned and identified by selection for Tn5-encoded kanamycin resistance in transformants. A restriction fragment from ammelide-negative mutant RE411 was used as a probe in colony hybridization experiments to identify cloned wild-type s-triazine catabolic genes encoding ammeline aminohydrolase, ammelide aminohydrolase, and cyanuric acid amidohydrolase. These genes were cloned from total cellular DNA on several similar, but not identical, HindIII fragments, as well as on a PstI fragment and a BglII fragment. Restriction mapping and Southern hybridization analyses of these cloned DNA fragments suggested that these s-triazine catabolic genes may be located on a transposable element, the ends of which are identical 2.2-kb insertion sequences. 相似文献
19.
Cloning, sequencing, and expression of the N-acyl-D-mannosamine dehydrogenase gene from Flavobacterium sp. strain 141-8 in Escherichia coli. 总被引:2,自引:1,他引:2 下载免费PDF全文
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum. 相似文献